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I. INTRODUCTION

The large accumulation of data on the low energy spectra of
many nuclei has made it possible to study systematically and in detail
G}he variation from micleus to nucleus of various nuclear properties
such as level energies, moments, transition rates and reaction rates,
In many cases it has been possible to identify in the low-energy spec-
trum states which seem to correspond to the motion of a single particle
or quasi-particle in an effective field and states corresponding to
collective vibrations or rotation of the nucleus, Moreover, there is
now accumulating more information determining in which regions nuclei
are spherical or deformed and which cases seem to corretpond to the
transformation between a spherical and a deformed equilibrium shape.
It has thus been useful to utilize a nuclear model from which
the nuclear properties may be computed in detail for many nuclei over a
large region of the periodic table. Such a model was that first studied
in some detail by Belyaev1 in which particles interact with a particular-
ly simple two body force. The force is represented by two simple components,
the pairing force suggested by work in superconductivity and first dis-
cussed in relation to thé nuclear problem by Bohr, Moﬁtelson and Pineaz’
and a long range part represented by a quad;upole force as suggested by
the work of Elliot3. Belyaev showed that the model contained the main
qualitative features of nuclear spectra, including in particular the
transition from the regions of spherical nuclei with their quadrupole
vibrational spectrdhto the regions of deformed nucleli with their associ;

ated vibrational and rotational modes of excitatior? .




The first quantitative comparison of the model with experimental
data was made by the authors 5 in a study of nuclei for which
either the neutrons or protons completely fill a major shell. (This work
will be referred to hereafter as Ref. I). There have also been a
number of calculations applying this model to deformed nuclei, with the
result that one now believes that an important part of nuclear structure
effects can be accounted for by these simple interactions7. It is the
purpose of the present work to carry out a detailed study of nuclei from
Ni to Pb in order to try to learn to what extent methods essentially the
same as those used in Ref., I. can be applied to the other spherical nucilei,
Also some phenomena such as B decay, not treated previously owing to the
restriction there to single closed shell nuclei, will be included.

The main assumption of the work is that the low lying states
of spherical nuclei can be treated in terms of two basic excitations,
quasi-particles and phonons. For the most part these are treated as
separate modes of motion., For even~-even nuclel the lowest excitations
are the phonons, and only these are treated in detail. For the odd-mass
nuclei both of these modes of excitation are low in energy and must be
considered, as well as their interactions. We trace the states of quasi-
particles and phonons to see to what extent systematic trends of the
experimental data can be followed.

While in Ref, I the shell model levels (single particle levels)
were chosen separately in each of the nuclear regions considered, i.e.
the Pb region, the Sn region etec,, in the present work, these levels must
be chosen once for all the nuclei in a large region of the isotope tablé

since all these nuclel are considered together, To obtain agreement with
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experimental results it is found necessary to include a smooth variation
of the single particle level spacings with A, and to use different
level spacings for the neutrons and the protons. Because the neutrons
and protons are filling different levels, the pairing force, which is
effective only for shell model pairs coupled to zero angular momentum,
is assumed to exist only for protons and neutrons separately and is
described by two strength parameters GP and Gh. The quadrupole force
is effective for protons, neutrons, and for proton-neutron pairs as well
and so is described by three coupling constants'Xp, XN"XNP'

With the chosen set of levels and coupling constants, the inter-
action is treated in the following manner. First, the pairing Hamiltonian
is approximately diagonalized by the use of the quaéi;particle transforma-
tion for neutrons and protons separately. The quadrupole force is then
described as an interaction between the proton and neutron quasi-particles,
The effect of this force is determined by the quasi-particle random phase
approximation, through which the phonons are introduced, Finally, for
certain nuclear properties the effects of an additional short range inter-
action are derived by the use of perturbation theory applied to the pair-
ing plus quadrupole wave functions,

In Chapter II the quasi-particle trensformation is described
and results to be used here are derived. The proton-neutfon short range
force is alsg discussed. The quasi-particle random phase approximation
as applied to the quadrupole force is then outlined, and the results
compared with those of adiabatic perturbation theory. The results are
compared with experimental energy level systematics in Chapter III. In.
Chapter IV, the systematic binding energy data is discﬁssed. In Chapter

V and VI the static electromagnetic moments of the ground state and some



excited states of nuclei arc considered. Chapter VII treats the
electromagnetic transition rates and Chapter VIII the systematic data

concerning beta decay.

II. DESCRIPTION OF HAMILTONIAN AND WAVE FUNCTIONS
A. The Hamiltonian

Starting from a shell model with a two-body interaction, we
derive various single-particle and collective properties and compare the
results with systematic data. Only the particles outside of the closed
shells are treated explicitly, the particles in the core being neglected
exceot in so far as they give rise to the single particle potential and
renormalize certain properties of the nuclear mrticles, such as the
charge,

The residual interaction consists of two components, a short
range part, which leads to an approximate seniority spectrum, plus a
quadrupole interaction, which is mainly associated with the collective
states., The miring force used to approximate the short range component
in this work has the property that for two mrticles in a j-level only
the state of zero angula’r‘ momentum (.seniority zero) is affected. In
the regions in 1ich detailed comparison with experiments are attempted
the neutrons and protons are for the most part being placed in different
shell model levels, This tends to make a force which acts most strongly
in states with all particles coupled two-by-two to spin zero less effective

between neutrons and protons than between likeparticles, For this reason,



we use a pairing force only between neutrons and between protons
separately, and neglect the neutron-proton short-range interaction
(except the spherical field producing part, as is described in the next
section). .
The notation will be the same as in Ref. 1, with bgi (%:i )
the creation (destruction) operators for shell model particles of type (p,n)g,

angular momentum J and 2z-component m, with the time-reversed phases

for the states 1 J=m) = bjtm JO) . Thus the Hamiltonian is

, 1 ¢ — € tg ¢ €
H =JZ,,. E,J me bim 4" Z G? bJ"-m’ bJ'—"" b')"‘ “)J”‘ .

€ = PROTONS, NZUTRON S m

AP Ap AN AN oY+ 7.4k )
Ay G- Q-1 QN A e (2227 G20
‘n which a ' is: the quadrupole operator
. g ¢
o AE] o . s TR f ‘
LGy = Z WY 4 o) BJ'M’.‘“M , (2)

the € are the single particle energies, and Gp’ G, Xp, W 80d
X np are force constants which must be determined. The choice of these
constants is limited by the calculation in the single closed shell regions.
From Ref. 1 one knows approximate values for Gn’ Gp ,X“ and Xp, however,
one does not know the magnitude of x np from that work.

The only neutron-proton interaction which occurs explicitly in this
Hamiltonian is via the quadrupole force., With this assumption the energy

spectrum is extremely simple., The particle-like states are separated
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from the ground state by the smaller of the proton or neutron gap, the
one phonon vibrational state occurs in the gap (except in the few céées,
when there is a low-lying O+ first excited state), and the vibrational
states with more than one phonon lie either in the gap or among the
excited particle states, It is the purpose of this work to study the
solutions to thia system and to try to learn to what extent systematic

nuclear data can be fit by such a model.

B. The Pairing Solutions

S ':t'r‘ * The first two terms of the Hamiltonian (1) constitute the pairing
o ‘ ‘Hamiltonian, theh ie used to represent the short range force because of
‘the ease.yith which faifly accurate solutions can be found regardless
af«tﬁé numbei of narticles involved, Since there exist rather complete
t;t descrlptions of the method of solution based on the work in the theory
.f;g: £ superconductlvity8 and of the accuracy of the results (including the
”‘effect of spurlous states) for nuclear problems in the regions studied
in the present work9 we limlt ourselves to a brief discussion of the
procedure in order to‘define the various quantities and to try to make'
the paper more self-contained. Since the neutron-proton pairing interaction
is neglected, the procedure which is described below is applied to neutrons
and protons separately and the index f 'is dropped.
First, a Bogolyubov-Valatin canonical transformation is carried

out to introduce the "quasi-particle" creation and annihilation



operators
» 1
Ljm = Ujbjy = Vi bjon

t
Bim =Uj bjm + Vi bim (3)

; in which ij (UJZ) is the probability of occupa tion (nonoccupatioh) of

: T"ithe‘j-level. Since the seniority coupling scheme is specified, one needs
L "to.know only these quantities to specify the wave functions., The chemical
i 1potentials, )- , introduced as langrangian multipliers to adjust the
:”§Vérage‘number of protons and neutrons to correspond to the isotope
under consideration serve as the Fermi energies of the proton and neutron

3 and VJ’ are determined by the solution

" systems, The coefficients U

of the equations

G Qi+t -
425 E;

S+4il=Cg-0/EiT =, )
3
where n is the particle number, and the quantities

E; = [ce,'—z)"»fA‘J* , (5)
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are the quasi-particle energies. These are the energies of the elementary
excitations from the ground state, which in turn depend uponwthé_quantiyimA,

defined by

=,1_GZ (_‘ZJ»M)UJVJ o :

which is approximately one-half‘ thelgap 1n the even proton or. neutroﬁAtv;,,fw

spectrum. Having selected ) and A4 to‘satlsfy Eq. (L) for protons _nd ;‘]‘:'“

neutrons, one can obtain the occupat on coefficie tsvfrom the relation-

ships

U = Dis - 07E32 50 R
V¥ eli—(&-2/E /2 Lo | |

The Hamiltonian (1) can bé‘then.appfqiimétg;y wriﬁfen;qgii,‘.q :

~ ) 1 fe d/f
H = Eo + % %,1 EJ d'J'M Jm
A€ A€ b Zz"‘*a‘"-a‘p);

The approximation made in Eq. (8) is the dropping of terms in the scatter-
ing of quasi-particles due to the pairing force and the neglect of tﬁe change
of the quantities A and A in the excited states. Although these latter
effects are sometimes large, especially for the calculation of the states of

odd-mass nuclei in the deformed region (e.g. see V.G. Soloviev7), in the region
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in which we calculate they are generally small. In the quasi-
particle representation a single particle operator of rank L,
. 1
‘ L o b .
o yo= 2 <Jl'm_/;', Cp 13m> ‘b ' bJ'm ' , has the form

/J‘ .

LU
.,+UJIVJ")(.AJ:5:+,(-/.) 'A‘jy

o 0' 2{<ul0—uJ>(1Lﬁ)‘EzﬁJ

+ (U UJ + V VJ') n ]+SL0;(1J")'V <J//01” >ﬂ;’__’2 ll

B with the upper (lower) s:.gn holdlng for an operator which does not ,(does)
) change slgn upon tim: rever<al. For convenlence, ‘two operators have been‘

1ntroduced in Eq. (9), the double quasi-particle creation operator

4

. Lt Tt 2+ %

A‘ 3y = [d’J 0(’J' ] M <‘,““) ’ o o ‘4(101) .

A

repréesenting two quasi-particle creation operators vector courled to.form a C
tensor of rank L (with a phase (=1) - - ), and .

LM

nfu# :

"a tensor of rank L correspondlng to t.he trans:n.t.ion of a quas:.-partlcle ftom

=14} 4y I

state J to state j' The expllclt rorma for these operators 1n terms .
' of the quas:L-partlcles wlth tJ.me reversed phases are given in Appendix I, .'
"Eqs. (Al) and’ (A2). The two quas:.-particles which are coupled to form’ A s
are always either both protons or both neutrons, and the notation {& e d.T '"] M

is used when we wish to consider a proton 'and'a neutron quasi-particle

vector coupled.
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The eigenfunctions corresponding to the pairing part of the Hamiltonian
are the quasi-particle states. For an even-even ngcleus the (unnormalized)
states are ’ . (T , : AL.':_'W:‘_-, [_AL,I A),: ]J.M Y, etc.,
with energies E , E + E) + Ez, EQ + El +E, + EB + 'E, , etc.,. respective-
ly, the quasi—particle vacuum, the two quasi-part1cle states, the four quasi—

partlcle states, etc. In each state there are an even number of proton

l':”“o
and neutron‘quaelypartlcles. The ground statev”"\P° ,»fls the qu351-particle
vacuum defined by

[

o Vo =0, '(12)

For an odd-mass nucleus the eigenfunctions are the ohe‘quasi-particle states

L1 S | Jm

dl'm- ,\P: s the three quasi-particle states Cd, Aza ] Y, P
N o

‘etc., with energies Ej+ El’ Eo + E1 + E2 + E3

(neutron) state there are an odd number of proton (neutron) quasi-particles

, etc., In each odd proton

and an even number of the other type. The states of‘an odd~-odd nucleus
consist of odd numbers of both neutron and proton quasi-perticles with an
energy spectrum EC +‘Eln E2p , etce |

Since the gap separates the zero qua81—part1cle states from the two ]
:quaei—partlcle states, the 1ow-ly1ng states for the even-even nuclei are
the zero and two qu331-particle statea, and for odd-odd nuclei are the coupled
Vvone proton and one neutron quasi-partlcles.l Therefore, in so far as the
quadrupole terms can be neglected the low lying states of odd-mass nnclei
‘have the simplic1ty of a single particle in several j-levels, an& the low-
lying states of even-even (except for the ground state) and odd-~odd nuclei

appear as two-particle spectra in those same levels regardless of the number
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of nucleons involved. This enables one to systematically compare the theor-
etical calculations to the experimental spectrescopic information with little
difficulty. In fact, there is now good experimental evidence that there is
this smooth and gradual variation of the particle~like states as one proceeds
through the major shells, in agreement.with the basic assumptions of this
picture. In the next section, the effects of the quadrupole interaction are
discussed, but first the neutron-proton short range force will be considered.

The neutron-proton short range force is expected to play an increasingly
larger role as one treats lighter mass nuclei., For the investigation of the
role of this force in nuclear structure, the nuclei with one particle added
to or removed from one closed shell and various numbers of nucleons outside
of the other closed shell seem to give the most direct information. Silver-
berg, who has carried out extensive calculaticns for these isotopes, concludes
that he must include a neutron-proton short range force to account for the
level systematics of these nuclei; and he finds that he can successfully
account for the general features of these systematics by calculating the

lOwa.ve functions.

radial overlap integrals between the neutron and proton
Let us consider the case of one proton outside of the proton closed
shell and a § -function interaction between the proton and various numbers
" of neutrons
t ot b
V= 5 (Pmig §Cpmmdinp> by ba baby (13)
nn’
A spin dependent part gives no contribution for the & -function force.
Evaluating the energy shift due to this force in perturbation theory for
the states with one proton and an even number of neutrons
th (n) t
YR - kP Tn ta
\PJ I Wo =0, ]T (U,"+V4. bj,»m bJ;m. Jle>, (w)

n iy m

b
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one finds for the energy shifts of these statna

Z (')-J +‘l)v ?L« ‘ (,\,) R (!L) !Lcl.lb

'YL,‘L,\J # o .;" 5 (15)

'The F{m;(VL)"  are the radial wave functions. Sinéq thé-éhérﬁy_ahifts

2& Ejh of the diffefent proton levels are unequél, £hé§e‘can be inter-
preted as additional shifts in the single-particle levels as a function of
A. However, the interpretation‘is complicated by the fact that thére are
other phenomena‘which can cause effective level shifts, E.g., the particle
interacts with the phonon (see next section), and the level spacings depend
upon the parameters €; , G, and X« Moreover, the addition of other
long-range forces to the quadrupole force, to change the composition of the
phonon, can alter the energy levels of the odd mass isotopes without éhanging
the sttématics of the collective atateslqi In Chapter III systematic
studles with these energy shifts AE are discussed. S

- In & similar manner one can evaluate the: interactlon, Eq. (13),

in pure quasl-particle states. Introducing the quaﬁﬂ“‘
tion (3), one flnds that only th LP part"o “the f C! cqnﬁfibutea and that,
e+gs in proton one quasi-partic

Quasi-partlcle states AE 5 k “r'e_"'- NI

%.p. 2 3 e | , |
AT = (U -V, JAE; . (151)

For the lowest quasi-particle states U 2:5 V2 so these effects would tend to

he ‘eniergy shifts of the

be reduced, and one would expect the maximum energy shifts at the single
closed shell plus one nuclei.

Of course, there are also contributions which arise from the admixture
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of higher quasi-particle statés. Because of the low-lying phonon states
which can be accounted for by the quadrupole interaction, one can expect
that the quadrupole part of the neutron-proton force might play an

»lespecially important role. This part is. included in our Hamiltonian, as

is described in the next section.

'C. The Long Range Force

1. Even-Even Muclei, QRPA Approximation

The general experimental eystematicah for the even-even nuclei in
the regions which are treated in this work are that the first excited
state is almost always a eingle 2+ state (at‘energy hw above the
ground state) with a fsst reduced 'E2 ktransition'to the ground state.
The next excited states, which are 2+, 4+, and O+ states, are at rouéhly
2K w excitation energy with a reduced E2 transition rate to the first
2+ state oi the same order‘es that_of,the letter‘to the ground state, while
the, reduced Ml transitions from the second '2¥i’to'the iiret 2+ state
‘and the reduced E2 crossover transition to the ground state is much
'weaker. Although these systematica are not so regular or so striking as
_the analogous ones in the rotational region, this data strongly suggests
that the lowest statee of the even-eyenwnuclei in this region are not
properly described as two quasi-particle or other simple particle states
but more nedarly as quadrupole vibrational states,

Starting from the pairing force with its approximate quasi-particle

solut.ons, one can see that the simplest additional force which gives
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rise to such adiabatic motions is the quadrupole interaction. Therefore,
for the long range force component v.le use the quadrupole force. Whereas
‘this 1_‘orce is important for particles in different orbit;o it cannot
V'ble ._Aséqmgd to be effective‘ only among proton pairs and neutron pairs as
is Athe‘ p&irir;g’force,, but must also be effecltive as a proton-neutron
:i’rit‘eraction. There are thén three coupling strength parameters Xh ’
Xp ‘, and X np , and the Hamiltonian Eq. (8) including the effect
of p.airing and quadrupole forces may be written out in terms of the

quasi-particle operators as
o ! "85 + S E. (oot B Bn)
H-Eo =2 Epletpetp + B By % UMl Rat NI
v :

A A A Ap A o
_.‘xpa".ap-.;x,a".a" —{x"(a".a"Jf a™e’),

(16)

where the subscript p, n refers to proton, neutron quasi-particle
A
operators and energlies respectively, and Q is the proton or neutron

. quadrupole moment operator:

t t A0V LU Bt P vy,
a,ﬁz ?::"Uvuu" V,V,,)(QL,J«,: ‘ﬂy'ﬁu)*}‘;ﬂ?ﬂ' ( y W 4

»wro

(17)
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and

PR PITO I SEE (18
)

The lowest excited states of an even-even nucleus are the two quasi~
particle states where both are protons or neutrons. (A state of one neutron
and one proton quasi-particle corresponds to an odd-odd nucleus), The quad-
rupole force has its most pronounced effect on the states in which the proton
or neutron quasi-particle pair is coupled to 2+, The approximation of linear-
ized equation of motion in terms of quasi-particle pairs called the quasi-
particle random phase approximation, referred to hereafter as QRPA, is used
to treat this for0312; The result of this approximation is that only the
2+ states among the many two quasi-particle states are affected. In the
absence of )Cqsp , the neutron and proton states remain independent and two
2+ states are lowered into the energy gap. C(ne will be a linear combination
of neutron 2+ states and the other of proton 2+ states. In the presence of
a large jx:mb a single 2+ level, which is a linear combination of both
proton and neutron 2+ states, is lowered into the energy gap. In the QRPA
approxdmation, that 2+ level is the first excited state of a quadrupole
harmonic oscillator in the sense that it is followed by an O+ 2+ L+ triplet -
at twice the energy, and by the other well known levels at integral multiples
of the energy h w of the lowest 2+ states. The previous calculations
for single closed shell nuclei (Ref. 1) for which only one kind of particles
is free to utilize the two body force shows that Xon 2’2$P +» The experi-
mental observation of only one low 2+ (and not a doublet) shows furthermore

that xm p must at least be a sizable fraction of Xm and x]o .
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kor even nuclei the QRPA approximation consists in dropping the first
"1jsum in Eq. (17) " The justiflcation for this is that the effect of thls term
.1s Spread over many pair states of various angular momenta, and its matrlx
elements are small since‘they are,proportional to,the number of quasi-particles
in the state. The second term of Eq. (17), the 6he'whicﬁ is retained, has

its effect concentratéd entirely on thé'2+ pairs, and its matrix element is
proportional to the number of participating particles rather than éuasi-
particles. lhe other approximgﬁions necessary for the solution of Eq. (16)

all involve dropping terms of single quasi~particle type spread over many
angular momenta and so are'consistent with the central approximation'gbove.

We may approximate the independent quasi-péfticle Hamiltonian as:
guT  TM
215 e(JJ,)A A,

JJ;

1
> B, (ot B P

>0

(19)

since both sides of Eq. (19) have approximately the same commutator with

all of the .A and Al, In Eq. (19)
£y = Byt By (20)

Mt

”.anq /5.;; is the vector coupling of Jl and 32 quasi-particle creation

' operators to a total angular momentum of J, M. defined by Eq. (Al).

The AT have the commitation relation,

o1 Joadrt 4L,
J ﬂ . [ e e I
(AT A 3= Srgr bt By G -6 §iie §3,i)

+ single~quasi-particle scattering terms spread over many
angular momenta . (21)
With the omission of the last term in Eq. (21), Eq. (19) describes a set of

independent harmonic oscillators.
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With the use of the Wigner-lckart theorem on Eq. (18), the retained term

of Eq. (17), may be written in terms of the "A" operators,

o o ’ +
A M Mg
@= 3 QA + €0 Ay ), (22)
*4wh'ere',
L e (YU Vi),
Q. =4 5T LN Y > (s
DT - (23)
In this appronmatlon, the quadrupole terms of Eq. (16) produce a
harmonic coupllng among the otherwise independent harmonic oscillators
described by the first two terms. The problem is simply to find the normal

T -
" modes. The modes described by An 9 J#2+ are already normal and retain

| the energies €(J.J‘=Q . Because of the commtation relation Eq. (21) only
only the J = 2+ modes are coupled. Since the coupling terms are themselves
harmonic, the Hamiltonian Eq. (16) expressed in terms of its normal mode
creatlon operators will be a set of uncoupled harmomc oscillators, Call-
ing the création opera.t.ors for these oscillators B and their energies w,

and letting Wo and Eo be the ground state and ground state energy of the

Ha.m‘:iltonilan such that ‘ B w \Vo =0 one has:

N t 1 t
(H—Eo)Bw\PO‘:[H7Bw]Wa =wa\Po . (2[&)
~ J¢2 ]“ 0 s227
Since [Q s A = the A do form normal modes.
For J = 2, one also wishes to ¢onsider higher excitations of the lowest
mode oscillator, hereafter referred to as the phonon, which requires
tq _ t
[H » Bw J - w BU ?
(25)
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as an operator equation. Let us define the commtators (which are c¢ numbers

in our approximation)

t o o
[Ag )Bw] ‘j"w(g) 3 (263)
[Afe BL] = 2,(%),

57 (26b)

where E stands for a proton or neutron pair

J‘r‘u‘)”z ov J”" J"‘i
(with the two angular momenta coupled to 2+).

(25) with Agzp and A}:p

Taking the commutator of Eq.

one obtains with the use of (16) (17),
(19) and (21):
(EP-DA P =26, [XpE Qp (utp* Sulp') *7’"?5 Qe P2 + 0,007
b (27a)
‘ )+ Qo (W) + ”uw‘))J

t
and two similar equations may be obtained using A g=n and A f=n

One may combine Egs. 27a, 27b to obtain
(Xp Sy= DZ, G p Ay (b * 0, () 4Ly 5,2 Q. (1) +0,(n) =0, (27¢)

and the two similar equations to obtain

2

/ X aat / =0
Komp Snzwap’m"’(b””‘”w”* OemSy= 12, Qe (o) 2o (rD (27d)



19
where

S', = 4 Zb(a'.)x 6(?)/[6([:)9'-' W 1l

(28)

and a similar equation aefin‘es Sn. Since Eqs. (27) are linear and homogeneous in
the sums on r, + 5, they will have solutions pnly for certain values of w,
namely those satisfying the relation:
&

(%k SF‘]) (XaSa=1) — X -S‘,Sw\ =0, (29

The nature of the solutions w satisfying Eq. (29) are easily seen. If
x‘nb =0 we get solutions when either X SP =1 or XnSa = 1.
Each of these equations has as the number of solutions the number of proton
(neutron) pair states coupling to 2+, For Xb> O, Xg>0 the lowest
proton w will lie below €(p) minimm, and the lowest neutron w below €(n)
minimum. The larger the X, the lower the state is (until for sufficiently
large X, (;:2 passes zero and becomes negative corresponding to a permanent deforma-
tion), There may ’thus be two low energy 2+ states in this case. The effect
on these states of changing X’"l‘ from zero is also easily seen. The prod\-xct
(X4 Sp= 1 (XomSp = 2) must now be positive, Thus, the lower of the
two ‘)CM, = O levels must be lowered farther making each factor above positive
while the higher energy is raised making each factor negative. For suffici-
ently large X, b there will be essentially only one w left in the energy

a
gap In particular for X yp = Xy Xp  Eq. (29) becomes

Kon Sy + 7¢pr =1, (30)
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For Eqe (30) to be satisfied it is clear that the lowest w is below the

. lowest (‘:(f’ ) while the other w's are spaced with one w between each adjacent
pair of energies 6( g )e The spectrum in this case is similar to that of the
single closed shell case,

The reduced electromagnetic transition rate from the lowest 2+ to O+ may
easily be computed. We have:

A t S
B(E2) = I<¥,| QelBL, ¥, >)

e
?

L)
¢+, 000 +4,0m) Eer |

=l @ (P)+A,.,(w)€r
pb T ¢ (31)

£

where € esf are the total effective charge for protons and neutrons

respectively. From Eq. (26) we see that

1 t
-1 YN )
B, = ;Zg(/Lw(f)Af (A, o
80 the normalization condition on B, requires
- T 1 ' L ) _ i
[Bu,B,] =43 (1n, ()1 —14,800 0 =1 (33)

Aside from this overall normslization Eq. (27a~d) shows that for positive

Xap

4 ,
Pou(P) = [Sa(i=-%mSa)]* Qp/(B(PI-w)
]
5,(0) = LSaCi=2m5u) 1> QL7 (E(p) +W) (34 ab)
, ‘
rLpin) = Es,,(n-xbg,,)]‘ Qn /()= W)

: (34 cd)
Nln) = [Se(1-Xp S ) @, /(Em)+w),
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Thus we have

oy n oA
n | CSﬁ(/"‘X"S‘n)]& S‘, ef“ + [S',(“%‘,Sp)j 5:"66". ‘ (35)
Bee "8IS, (1-%n Sp) z;:(ap)’é(h)/(ﬂﬁ‘-w‘)’w X -x,,sp%(a,.)"eu)/fa..}‘-u’} J.

For the numerical results, the effective charge for protons and neutrons
have been taken as 2e, and e respectively, The majority of the computa-
tions were performed with the parameters of quadrupole coupling all chosen
equal i.e. Pp =y ‘= Xnp . In that case the B(E2) value

takes the simpler form:

k n 2
BE2) =— ISk €ees + Sn Cese
P Z.,(Q" ) EMCERy =™ + %(%)z EagyT 36)

2% Cauar

2.  Even-Even Nuclei = the Adiabatic Limit

Condition(29) may be rewritten

Xp— '/Sp Yonp -0 (37)
Lnp Yy — 1/ S '

In the adiabatic limit i.e. for any w such that

L. «
W << E@ i, (38)

we may write

5, =4 ag (-0 Be/At) o)



where

O - %ca;)"/ece') ,

(4,0a)
B, =S @) /e .
¢ (4Ob)
In this limit Eqs (37) may be written:
(Jay-%p) -1 @ By Ay ot ’ =0
| Xonp (125 2) =40 Ba 00 (1)

There are two values of‘w2 which satisfy Eq. (41). DLither one or both of
these roots may satisfy the inequality (38). In the first case only that
lowest root will be an approximate solution to the original relation Eé.
(29). In the latter case (which will hold only for relatively small )cmk),
both roots are approximate solutions of Eq. (29).

It is easy to show that Eq. (41) is also the result of adiabatic per~
turbation theory. The quadrupole force is replaced by the interaction of each
particle with two quadrupole fields —— a neutron and a proton field. The
self-consistency conditions are applied that each field have the same quad-
rupole moment as the corresponding particles, The inertial parameters are
calculated as in Ref. I. The resulting collective Hamiltonian written in

terms of the collective parameters Zi‘ is derived in the same fashion as

in Ref. Ia
s =m> - =2 - - - e
H=1Cy 8y +4T,80 - 2np8al) +iB)Bp +4Balh (42)
with

(43a)

(430)



23
It is then easy to show that the normal mode energies of Eq. (42) are
“Just given by Eq. (41).

In the special case Xy = ﬂ/,, = %7,,0 =X the adiab;itic limit
to Eq. (29) takes the particularly simple form:
W = (Bb+ﬁﬂ)"[‘(1x)‘,’ —(Qp+an],

(44)

Eq. (44) 1s also the result of an adiabatic perturbation theory calculation.
In this case a single quadrupole field is introduced which acts with equal
strength, given by the parameter X , on protons and neutrons. A single
self consistency condition is applied that the field have the same quadrupole
moment as that of all the neutrons and protons taken together. The resulting
collective hHamiltonian describes harmonic vibrations with a frequency given
in the adiabatic limit by Eq. (44).

The adiabatic limit to the B(E2) value Eq. (35) is also obtained
by adiabatic perturbation theory, with the assumption that the lowest 2+
state of Eq. (42) contain the entire quadrupole matrix element with the
ground state. Thus in the adiabatic limit QRPA and the harmonic oscillating
quadrupole field model are identical. For weaker quadrupole coupling, the
QRPA has the advantage of going to the correct limit while in the oscillator
model, the vibration is introduced as an extra degree of freedom which persists
to zero coupling,

It should be emphasized that the QRPA requires a large effective degeneracy
and a domination of pairing effects. If A4/G is mot sufficiently large, the
M terms can be as important as the AT terms and, for example, the ground

state can be lowered in energy more than the 2+ state by the P(z)‘forcel3.



3., 0Odd-Mass Nuclei

In odd-mass nuclei, the low states (in the absence of quadrupole
coupling) are the states of one quasi-particle. With quadrupole coupling
there will be in addition some number of phonons. Considering only the
degrees of freedom associated with the phonons and the quasi-particle we
may obtain the approximate Hamiltonian for the odd-mass system by simply
adding to the phonon Hamiltonian thonon = @ BL Bu . (which comes
from Eq. 24), the energy of the quasi-particle given byéE,(d,Id,,+P1ﬁ,) y
and the interaction between the quasi-particle and the phonons. The w is
the phonon energy i.e. the energy of the lowest oscillator. The phonon
operators Bw and the quasi particle operators a, B are treated as independ-
ent variables ise. the equality [ Blu , d..f_] =0 is assumed. This is
Justified by the fact that a phonon contains only a small amplitude for the
presence of any particular quasi-particle, The interaction referred to
above, between the quasi-particle and the phonon, arises from terms in the
quadrupole part of the Sriginal.Hamilton'ian obtained from the first sum of
Eq. (17). Specifically, from the term a . a the cross term is retained
in which one of the 6 is approximated by Eq. (22), and the other retains
the scattering term zg,’,‘,,(v,u,fYwa)_faLﬁd,l *P:'Pi) « Although
this term is dropped for e*-en-even nuclei, for odd—mass‘ nuclei it must be
retained since it can scatter the odd quasi-particle caﬁsing energy shifts
comparable to the original single particle separations. This interaction
term may be written in terms of J| and AT of Eqs. (10 - 11), for a proton

quasi-~-particle as
M I P a F S ) ‘ LM
Hu = 274 " YUy (U0, - Vive) My

. -A1 wt
'['%o-'{a»u: wr'Ay) P £l R, )
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and a similar expression occurs for a neutron quasi-particle. By the use

of the inverse transformation to Eq. (32),

A"e =3 (Ay(© BZ, + 4, (8) Bw), (46)
W

the interaction term Eq. (45) may be written in terms of Bw and B(I\ .
If only the phonon and odd-quasi-particle degrees of freedom are considered
the odd-proton Hamiltonian may be written iy
Hom = Z E, G, P +02 B B4 -/z;e.)"s-’ﬂa Ve L CL T A i

PROTON A 1

it opy ZpCSali-%aSa)1* Sy + Xup[Sp(i-ZpSp)I™ S T
) : 2,  § -

(B +Bw @wt[sa(r -xuSa)E(ap‘s(h)/(ap)‘—w’)‘* SHI-ZpSPE(@ EM e 1

(47)

In writing Eq. (47) we have included for the quadrupoie interaction
part, but not all, of the contributions from the three or more quasi-particle
states, We know that in some cases the effects of the P2 force on the quasi-
particle states will not be properly described in this manner; e.g., in the

calculation of Ref. I, the low-lying 5/2~ state, which is associated
mainly with the seniority three state of the (f7/2)3 configuration, is
predicted by an exact solution of the pairing plus quadrupole interactions,
while this state would remain high in energy if one used the Hamiltonian
(47). Although the phonon-quasi-particle interaction does not always re-
produce accurately the quadrupole effects, in the regions included in this

work the phonon states are much lower in energy than the two and more
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quasi-particle states (in the even-even nuclei) whenever the quadrupole
effects are large, so one can expect that the Hamiltonian (47) will include
the largest quadrupole effects for the states arising from the one quasi-
particle states in the absence of a quadrupole interaction, However, for
the states which arise from the seniority three states, e.g., the low=lying
states of spin j“l for pure j configurations such as in t‘.he‘Vsl
case, one would not expect that the interaction will properly treat the
effect of the three quasi-particle states.

This Hamiltonian Eq. (47) which is in the form of an intermediate
coupling between quasi-particles and phononslﬁs diagonalized including the
quasi-particle states together with all admixed states containing up to
two phonons, The matrix elements for this calculation aside from the U, V
factor and the r, s, factor are just those given by Chaudhury%a The no-phonon
and one-phonon matrix elements are ) -
illom(Bldgsy = ~ECerrmiCintys €3 L (07 (Uil =WV )
As the two phonon states are weakly admixed in low states, the fact that

[B+ Efl.rq{ may not describe them very well does not introduce much error.

The one-phonon to two~phonon elements are
—-— 1 s i
{(BL;)gtHerol [BIBD; Y1) = = F (572 NN

J J! o3 ., . ..thb*
el e’ T tanoaiwt waa st

The effective coupling constant X is
i
ZpLSull=ZnSn) 1> §p ¢ Xap fSy(I-lpS,.)]*‘ S»

x= :
(8w)h[sul1-%n ‘v’f(ap) EPINER’ -0 +Sy(1~ B} S)) Zian)’* En/(gap-w*)> 1 i

(50)



29
The equations for an odd neutron nucleus are the same type. The diagonal.
ization of Eq. (47) was perfofmed on an electronic computor and the wave
functions and energies of all levels up to 1 Mev and higher in some cases
were retained, The results of this diagonalization are presented in the
following section, together with the results on energy systematics for

even muclei and a few comments on odd-odd nuclei.

III. ENERGY LEVEL SYSTEMATICS

Since in the systematic studies of even-even, odd-odd, and odd-mass
nuclei for the spherical region one is generally concerned with quite
different. aspects of nuclear structure, we shall treat these systems
separately. For the even-even nuclei the main energy level systematics
concern the pocitions of the vibrational levels, while for the odd-mass
nuclei one has information both about the positions of the quasi-particle
states and the states of quasi-particles and phonons, and these states are
often strongly admixed. For the odd-odd nuclei the experimental data is not
so extensive, and seems mainly to give information about the states of

proton and neutron quasi-particles.

A. The Parameters and Description of Method of Calculation

1. The Interaction Strength Parameters

The parameters which enter into the determination of the energy
levels, and the wave functions which are used subsequently to calculate the
other properties, are the two pairing force strength parameters, Gb
and G, the three long range force parameters, )ﬁn, ‘)(p,‘ and ’xnp,
and the single-particle energy level parameters GEJ o A fourth

parameter g, defined in Eq. (13) is used for studies to try to determine
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the €5j ﬁ- , but does not actually enter into any part of the calcula-
tion directly.

The most accurate information for the detefmiﬂation of the strenéth
parameters of the pairing force comes from the single closed shell data.

As was discussed in Ref. I, the main experimental information which goes
into the choice of these parameters is the even-odd mass differences, the
gap, and the position of certain states of high angular momentum and odd
parity in even-even nuclei. However, to the extent that the calculated
values of these quantities depends upon the details of the single~particle
spacing there is some uncertainty in the choice of the best value of these
parameters even in the single closed shell regions., We estimate that the
overall accuracy is approximately 20% for these isotopes.

It is surprising how little additional direct information on these
pair.ng force parameters can be extracted from the remaining isotopes, which
constitute the great majority of the nuclei included in this work. First
of all, there are not many of these isotopes in which one can clearly identify
the lowest excited quasi-particle states because the multiple phonon states
are always in the gap or mixed in with the lowest-lying two quasi-particle
states.s Secondly, because of the increased complexity in the spectrum as
soon as one leaves the single closed shell isotopes, it has been difficult
for maﬁw dete?minations of states of high spin aﬂd odd parity to be made in
even-even nuclei, Moreover, although there is some excellent mass data, the
theoretical uncertainties due'to increased importance of the long range force
does not allow the even-odd mass data to be so clearly interpreted, as will

be pointed out in Cpt. IV,
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For this reason, we have simply used the force parameters which are
obtained from the single closed shell regions. Although there is some
evidence for Gp to be slightly larger than Gn in the deformed region7 ;
and one might expect this to be the case because of the smaller Ffermi
energy for protons than neutrons in heavy nucleils, we were unable to
Justify the use of two different force parameters in our calculation, In
a rather extensive survey in various regions we were not able to find an

overall systematic improvement in the various states by using different

values, Thus we chose

(51)

for each isotope, and allowed G to have a mass dependence of G~ 1/A,,
where A is the mass number,

As will be discussed more fully in Section B, there is nothing in
all of the systematics on the vibrational states which contradicts the
simpie picture of the vibration being formed by a force equivalent to the
interaction of the quadrupole moments of the particles with the quadrupole
moment of the entire nucleus; i.e, in all of these nuclei the spacing of
the vibrational levels is essentially that of a single quadrupole vibrator.
As can be seen from Eq. (44) and the discussion in the previous chapter,
this suggests that the three quadrupole force parameters are approximately
equal, Since there was nothing found in the calculations using different
force strengths to suggest that systematic improvements could be obtained

by using different force strengths, we have made the choice that

)L,, > Xn =%MP = 2 (52)
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for all of the calculations which are discussed here::'ter,

In the even~-even nuclei we attempt to determine the best overall
values for this 2 parameter and its A dependence. However, for the
odd-mass nuclei we do not directly use this value, as will be explained

below.

2., The Single-Particle Parameters

The greatest uncertainty in the numerical results obtained in this
work comes from the uncertainty in the values of the single-particle energy
parameters, €; . From the single closed shell nuclei and from the
isotopes with one particle away from a single closed shell one can often
obtain rather good information about two or three levels, but usually one
must hope only to have reasonably good values for the levels which are
most important for a particular isotope. However, because of the large
changes in the mass numbers even in one region which are involved in these
calculations, this is not always very easy to accomplish in practice,

The most important aspect of this difficulty seems to be effective
changes which are produced by the neutron~-proton short range force. In any
calculation with a phenomonoligical residual force, the simplest correction
which one can attempt to make, to try to take into account the parts of the
interaction which have been neglected, is that of altering the effective
potential for the particles. In doing this one effectively takes into
account the Po (angular independent) part of the interaction. We have done this
in a phenomenonological manner in the present work in a few cases where there

seemed to be clear evidence that this is necessary.
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It should be pointed out that although this adds a certain amount of
arbitrariness to the numerical results, such a device cannot alter the
essential picture which results from the coupling schemes which are
employed, When the coupling scheme breaks down, low-lying states of character
different from those which we can obtain appear. Also, the limitations
imposed by the necessity of fitting so many of the low-energy properties
considerably reduces this arbitrariness, The main reasons for making these

adjustments are to enable us to better test the validity of the methods
which are being employed and to make the results more useful,

In order to try to estimate the energy shifts which would be needed
to incorporate the spherical field part of the short range neutron-proton
force, we calculated the energy shifis for one particle in all of the
levels used in the various regions, interacting with the particles of the
other type by the method described in Cpt. II. For the single closed
shell plus one isotope one does obtain overall improvementlo, however, there
are a number of difficulties which make it impossible to apply the method
consistently. E.g., using a force parameter of sufficient strength to
account for the 1/2 = 3/2 spacing in the Te isotopes, the change in the
spacing which occurs for the Hg isotopes causes the gap to get extremely
small or vanish for the protons which contradicts the data; and although
the changes in the 1/2 - 9/2 separation in the In isotopes is in good
agreement with the experiments, the resulting values for the pi/2 - 39/2

spacing in the lighter isotopes in that region is not satisfactory.
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On the other hand, from these studies we can see which levels are most
strongly altered and can try to estimate the energy shifts which might be
reasonable. The results of the calculation mentioned above are not given.

We also incorporate the energy shifts which are known to occur in
nuclei; the separation of all of the € vary as A-l/3 and in
adddition change with the spin-orbit splitting dependence A-Z/B.
Having decided upon the parameters, the occupation numbers V, and the

J

quasi-particle energies E, are determined from Eqs. (4). The even~ and

5
odd-mass caiculations are carried out independently. For the even-mass
nuclei we determine the phonon energy w with several choices of the
quadrupole parameter, while fer the odd-mass nuclei we attempt to carry
out a more nearly accurate calculation by using the experimental value of

the phonon energy and fit the force strength from the neighboring even~

even nuclei,

B. Energy levels of Even-Even Nuclei

Although most of the calculations were performed using the QRPA
approximation and Xy =Xy = Xup s 8 pumber of preliminary studies were
made of the effect of using different coupling constants and of the relation
of the QRPA approximation to the adiabatic approximation, With the exception
‘of a few nuclei, the adiabatic approximation to QRPA is quite good for the
calculation of the vibration of spherical nuclei. Most of the exceptions
are among the nuclei with a closed proton or neutron shell and thus a parti-
cularly high energy for the 2+ vibrational level. A few other cases occur

for nuclei at a sub-shell such as Z = 4O for which the energy gap is
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particularly small. In the worst cases, the QRPA energy and B(E2) can
differ from the adiabatic approximation by as much as a factor of 2. 1In all
other cases the energy and B(E2) agree within a few percent for the two
methods of calculations This indicates that the nuclear vibration is indeed
adiabatic and that it is correct to picture the motion as a vibration of the
nuclear shape of low enough frequency that the individual particle orbits
can follow the motion,

The same values were used for the proton and neutron long range strength
parameters X, and X.p for most of the studies, in agreement with the
results found for the single closed proton shell and single closed neutron
shell nuclei. The value of 2Xmp in relation to Xp and X+ has
two main effects. Firstly, a very small value of X np leads to two
low lying 2+ states (except for the single closed shell nuclei) contrary
to the experimental f-3t., Secondly, its value determines the 2+ energies
and B(E2)'s of the nuclei away from closed shells as compared with those
quantities for the closed shell or near closed shell nuclei. This is because
the value of %M, has no effect on a single closed shell nucleus in the
approximation used here. One might, for exa.mpl.e, choose %»1- and ”p
to fit the 2+ energies of the single closed shell cases, and then choose

%’r\p so that the nuclei just two particles away from the single closed
shell would have the right energy. Although these latter 2+ levels are
much lower in energy than the former, the above procedure leads to a rather

small Xﬂb « It should be emphasized that in each region of isotopes only
a limited number of proton (and neutron) single particle levels are con~
sidered; namely those of a major shell. Thus, for example, for the nuclei

below Sn the protons are in the 28¢ Z <50 shell while for the nuclei
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above Sn they are in the 50¢Z€82 shell, For Sn itself, the protons
do not exist for the calculation. Since different numbers of levels are
used in the different cases the effective coupling constant may be a little
different due to renormalization effects., In particular it may be a little
extreme to eliminate the protons entirely for Z = 50 . The effect of the
inclusion of the levels of two shells has been examined and found to
suggest the closed shells are probably not completely inert. For example
the inclusion of the f7/2 level below, for protons and neutrons in the
28 Z €50 shell, has quite noticeable effects (softens the vibrator),
particularly for the Ni isotopes. In fact the inclusion of thiS‘f7/2 gives
more than just a renormalization effect, since it changes the shape of the
2+ curve for the Ni isotopes, lowering the predicted energy much more for
Niss‘than‘for the heavier Ni isotopes. The shape of this curve could be
corrected again by bringing the 39/2 neutron level more into the picture,
With the single closed shell vibrators softened somewhat, the previously
described prescription would give a larger %np since Xp and Xmy could
be chosen smaller,

While many of the detailed variations of the 2+ energy seen in a part-
icular sequence of isotopes could be reproduced by a particular choice for
Xp , Xy ,and %"P , it was not possible, with a single set of
parameters, to fit all these details for all the spherical nuclei, However,
a reasonably good compromise is possible, It is found that the choice
x,, =%y = %mp seems to give overall results as good as any. This
choice together with a judicious choice of the single particle energies and

pairing strength reproduces the variation of 2+ energy fairly well,
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The exact values of w near the point at which w2 becomes negative
for a particular isotope series is extremely sensitive to the value of X
because w is increasingly sensitive to X% for increasingly small w.
This can be seen from the adiabatic limit Eq. (44). For w 240 ,

W (Ko- M2
(53)

where %o is the value of X' for which w = 0. Thus it is not surprising
that while the fit is reasonable if w is not too small, for those isotopes
for which E2+ is less than about one fourth of the pairing gap, the smallest
change in % or isotope number can mean the difference between E2+ = 1/4°
gap and a predicted deformation, On the other hand near mass number 150
the point in the isotopic table at which m2 becomes negative is such a
general feature of nuclear structure that for any reasonable choice of
parameters one can only change this point by about one isotope. In order
to use the model for nuclei as far toward the deformed region as possible,
the value of X used in the calculation of other properties was chosen to
fit the experimental 24 level energy. Such a set of X values are plotted
in Fig. 1.

Nevertheless, considerable detailed agreement with experimental 2+
energies is obtained with fixed X in each region as can be seen in Fig. 2a, b.
The shape is right in the Pb isotopes, as observed in Ref. 1, in addition
the lower energies are well fit if not in fine detail in Hg and Pt.

Then for all of the lighter nuclei of the so-called deformed region with
the exception of Os , which is just on the edge and can be made to vibrate

or not with slight parameter adjustmenté, the w2<: 0 indicating a theoretical
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deformation. From the other side, starting with the good Sn results, the
decrease of the 2+ energy for heavier nuclei Te, Xe, Ba, etc., and the
increase at N = 82 1is well represented (only the most neutron deficient
Xe and Ba isotopes have wz'( 0). Above N = 82 the deformation quidly
gsets in in agreement with experiment on energy level systematics as well as
the photonuclear experimentsluhich show a double dipole resonance as one
enters the deformed region near mass number 150 . Presumably our result
thét the prediction of spherical symmetry in the 0s isotopes is uncertain
within the range of our parameters is in agreement with the experiments which
show a gradual transition from spherical to deformed shape in the 0s regionl7.

The rapid drop of the 2+ energy as one moves away from closed shells
for nuclei lighter than Sn is also well represented with the same parameters.
However, these parameters lead to negative w2 values for some regions
away from closed shells, in which the nuclei do not exhibit the extremely
low E2+ values and the clear cut rotational spectra characteristie of the
rare earth nuclei., In particular the region of isotopes with N~§52
32€72<36 and the heavy isotopes for Z = L4, L6 are predicted to be
deformed. Although these nuclei do not exhibit rotational spectra, they are
the ones with lowest E,, values in the vicinity, and in several cases the
odd mass nuclel have low states corresponding to anomalous coupling which
might indicate incipient deformation. L.g. these are cases for which the
simplest interpretation of a low 7/2+ state is that it is a seniority three
configuration of (g 9/23)7/2+. This is essentially the configuration which

would be predicted by the Nilsson model and is thus suggestive of deformation.
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Nevertheless, in the rest of the discussion, the value of w for these
isotopes is taken from experiment and the computations are performed as if

the 2+ was a vibrational state of a spherical nucleus. ",

C. Energy Levels of 0Odd-Mass Nuclei

In states of one quasi-particle with zero, one, and two phonons
} t j r 4 T, otaty 1.
WJ s Cj’oo d’j‘wo*z CiJ'u. Ld’J”B’JJ Yo "'JZ.} Ciray Ly B8’ 15 ¥, '
A

(54)

the Hamiltonian (47) with the interaction term (45) is diagonalized. Since
we are using force parameters . = )ﬁbz'x/" = %"‘I' , this interaction

- has the simple form

H,\ = % K(W,6,€0 Z FiyMyy (8% 8, (55)

in which the £ represent the coefficients in the sum in Eq. (47) and

3
K 4is a quantity which only depends upon the single-particle energy levels,
the pairing parameter, and the phonon energy. In this work we have used the
experimental value for the phonon energy from the neighboring even-even
nuclei for both the unperturbed energies and K for each odd-mass isotope,
and fit the value of )L from experimental phonon data. This allows us to
proceed with the important odd-mass data without the necessity of a selection
of parameters so accurate as to fit the very sensitive phonon energy, as was

described above, The parameters used and the results of the calculations are

presented in figures and in Appendix II,.
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1. The Region 50 Z <82; 82< N <126

This is the region in which there is probably least uncertainty in
the parameters., From‘the‘Pb207 isotopes one knows the‘heutron energies for
the 82-126 shell in the region below Pb and from the Tt isotopes one has
quite a good idea of the important proton levels. The results for the odd-
mass Pb isotopes are so similar to Ref. I and the work of Sorensen, Ref. 14
that we shall not discuss them.

Let us first discuss the nuclei above the deformed region, Figs. 3 = 7.
For the odd neutron nuclei as one proceeds from the Pb isotopes to the
deformed nuclei at mass number 190 one is removing neutrons from the pl/2’
f5/2, and p3/2 levels and the 113/2 quasi=particle state is dropping Jjust as
in the odd Pb isotopes. In the Hg isotopes, where the no-phonon and one-
phonon states generally remain well separated one can see this effect, Since
the "opposite" parity states in any region are generally not so strongly
admixed by the quadrupole force, in Hg the mixing is still weak enough
for the 13/2+ quasi-particle to move through the ones phonon state. The com-
parison with experiment shows good agreement for this state and the fact
that one does not see the isomeric state after Hgl99 is predicted by the
fact that 13/2 level is moving into the one-phonon levels of higher spin for
H3201 and Hg203. The other one quasi-particle states are affected by the long
range force much more than in the Pb cases, and the results are in reasonable
agreement with the experimental values, For the Pt isotopes the one-phonon

states do not fall quite as low in energy as the experimental ones, while the

occurrence of low lying phonon states in the experimental data for the 0s
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isotopes suggests that one is in a transition region where the methods
employed here are beginning to be inadequate.

The 81/2, d3/2, and‘hll/2 levels are the important ones for the pairing
part of the odd-proton calculation. For the Tl and Au isotopes the theory
and experiments show the phonon states separated from the no-phonon states
while the theoretical calculation does not seem to show the no-phonon state
being sufficiently admixed into the one quasi-particle states for the Ir
isotopes. An increase in the strength of the quadrupole interaction would
markedly improve the results in the Tl isotopes, and then in Au the phonon
states would fall lower, which would be more nearly consistent with the
experimental data,.

In order to better describe the effects of the quasi-particle~phonon
interaction we show the energies of the quasi—ﬁériicle states and the states
which arise from them in the presence of the quadrupole force in Fig. 8. The
quadrupole force has little effect in the odd-Pb isotopes while for the odd-Hg
spectra one can see that the phonon effects are large and very much improve
the agreement with experiment, since the 3~ state is lowered with respect to
the 3/2" and 5/2" states. In fact a moderate increase in the quadrupole strength
would make 1/2~ be the ground state in Hglg5 and‘Hgl97, and perhaps in Hg 199.

One also sees here an effect which seems to be present in all of the
spherical nuclei, that of the compressing of the quasi-particle states due to
the stronger interaction of the higher-lying quasi-particles with the phonons
(see Eq. (47)). This is an important systematic feature of our coupling
scheme which seems to be verified by the empirical data,

There is not much data below the deformed nuclei for this region, and
one expects our methods to give rather inaccurate results for cases with

even a few neutrons added to the 82 neutron shell because of the approaching
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deformed region. The only systematic data concerns the odd proton nuclei

shown in Fig. 17 in which one sees the 7/2 and 5/2 statas with relative

motion due to both the change of the quasi-particle energies as one adds
protons, and the effect of the quadrupole force. However, the density of
states does not seem to be in agreement even as the phonon states begin to fall

low in energy as one can see in Figs. 13 ana 17,

2, The Region 50¢ Z £82; 50< N <82

In this region the protons are being placed into the g7/2 and

d5/2 levels and the neutrons into the hll/2’ 31/2, and d3/2 levels (see
figse 9 = 17). In so far as the neutron-proton effective shifts can be
neglected, the two important proton levels are accurately known from the N = 82
isotopes., Referring to Fig. 14, one sees that the Sb energy levels give clear
indication that in fact the relative motion of these levels occurs more rapid-
ly with changing neutron number than can be accounted for by the phonon inter-
action of the strength used here. In Fig. 14 the calculation is shown with
dashed lines including the energy shifts due to a delta~interaction between
the single proton in Sb and neutrons. Of course this effect is smaller
for the other odd-proton isotopes, since one is approaching the N = 82
shell closinge.

A very interesting phenomenon which is occurring in the odd-proton
isotopes is the important role of one particular state., Both in the theoretical

calculations and in the experiments one can see a spin 1/2 state moving quite
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rapidly with respect to the other states, Figs. 1416, and even becoming ﬁhe
ground state in C5129. This state is mainly of phonon character according to
the theoretical calculations. It would be very nice if one could obtain
some information about the transition rates for this state, since we would
predict that E2 transitions to say the 5/2 state would be highly enhanced,

The odd-neutron isotopes are also quite interesting, with very good
systematic data, The Sn results differ from the results in Ref. I mainly in
that is was found that a different ord.ring of the single-particle levels could
account for the systematics of the 2+ first excited states in the even Sn
isotopes and give much better fits away from the closed proton shell, The
positions of the 1/2, 3/2, and 11/2 states are fit adequately in the Te,

Xe, and light Ba isotopes. However, as one approaches the case of one

particle away from the closed shell at 88137, 03139

, and Ndlhl there are
errors either in handling the effect of the quadrupole force or of the
neglected neutron proton force. Because of the special nature of a calculation
with one particle away from the closed shell the phonon calculation might be
particularly inaccurate for those cases. As for the neutron-proton interaction,
because of the dependence upon the occupation numbers of the states (see Eg.

(15)) and the sudden decrease in the pairing effects as one reaches one

particle outside of a closed shell there might occur a marked difference

in the shifts in the %gt-% and %% - %‘separations as one goes from 79 to

81 particles.

In Fig. 18 and 19 are shown the effects of the quadrupole inter-
action on the quasi-particles for the odd-proton and odd-neutron isotopes,
respectively. For the odd-proton cases in the absence of the quadrupole force

one would have only the 7/2 and 5/2 low-lying levels., First one sees that




L2

the relative motion of the experimental 5/2 and 7/2 levels in I, Cs, La and
Pr is much larger than coculd be explained by the motion of the Fermi level.
Also, the neutron-proton short range interaction gives very small contri-
butions since one is near the 82 closed shell at which the energy levels
have been determined. The quadrupole force thus not only brings down the
1/2 state and other one-phonon states, but semi-quantitatively accounts for
the 5/2 - 7/2 relative motion.

If Fig. 19 one can see that there are large effects of the quad-
rupole force which generally give important improvements when compared to the
quasi-particle levels. The main effects are to keep the 1/2 level as the
ground or low-lying level for high neutron numbers to give consistency to
the spectra of Sn, Te, Xe, and Ba, It also tends to lower the 3/2 state,
keeping the 11/2 level from being the ground state or very low-lying state
in all of the isotopes with N26Y, In the light Sn isotopes one sees that
the relative shifts in the 1/2 -~ 7/2 levels go in the wrong direction making
the fit a little poorer, although the energy shifts involved are only 0.1l to
0.2 Mev, From all of the evidence we can gather it seems that the general
description and approximations used in this work are adequate for all of the

isotopes in this region.

3. The Region 28< 2 £50; 50 <N €82

For the odd proton isotopes in this region, the‘pl/z‘and 39/2

levels are mainly involved, Figs. 20 -~ 23, Because of the great difference in

the radial wave functions of these two states, their overlap integrals with

the g7/2 and d5/2 neutrons are very different. For this reason one can expect
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these levels to effectively change their relative spacings as one changes the
neutron number. In the calculation there is included a shift of the g9/2
level of 0.1 Mev per neutron to account for this effect,

For the Tc, Rh, and Ag isotopes it seems almost certain that our
coupling scheme is breaking down. The occurrence of the low-lying 7/2 and
perhaps 5/2 positive parity states would have to be explained in our method by
a coupling of the 59/2 quasi-particle to the phonon. However, we are never
able to bring that level nearly as low as required, and do not seem to have
a mechanism for causing such rapid changes in these levels as do occur for the
spin 1/2 states. If we would include the three quasi-particle states Lhere
would probably be introduced important corrections, In fact this would be
analogous to the type of calculation done for the configuration (g9/2)3,
which has been used by Talmi for calculations which do have a 7/2+ statele, but
it is not clear that such a modification would be adequate to handle this
situation. One should note that the even-even isotopes in this region show
great instability for the spherical shape.

A similar situation seems to be present in the odd-neutron isotopes,
Fig.s 24 - 27, where for the Ru and Pd isotopes there is obviously a
, strong admixing of phonon states in the low excited states. However, in
these cases it is not so clear that the coupling scheme is inadeuate, although
there is a tendency for the phonon states to remain too high to account for

the density of low-lying states,

4o The Region 28 £Z £50; 28 €N <50

In this region the protons and neutrons begin to have a large

probability of being in the same J-levels, so that one can expect the
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neutron-proton short range interaction, which has been neglected except for
its field producing parts, to become very important. Moreover, the inclusion

of the £ levels in the calculation of the energy of the 2+ state con-

7/2
siderably alters the relative positions of the 2+ states in the even-even

Ni isotopes and indicates that at least for the lighter isotopes in this region
the f7/2 particles must be included -~ which makes the neutron-proton short
range force important even for such isotopes as Ni and Cu. In fact, the

level spectra in this range cannot be understood in terms of the coupling
scheme used in this work.

In the odd-proton isotopes shown in Figs. 28 and 29 this is most
evident in the As and Br isotopes for which the neutrons are filling the
g9/2‘levels. Here one sees many low-lying levels which originate from the
phonon states and other states of higher seniority., We can understand a
little of this in our coupling scheme, such as the low-lying 9/2+ state in Br
ih spite of the 9/2+ quasi-particle being at 1,5 Mev, but since a number of the
levels apparently originate from the seniority three states we cannot hope
to account for them (see Cpt. II).

One sees similar results in the odd-neutron isotopes, Figs. 30,

31 and 32, Once again the 9/2+ state can be lowered by the quadrupole inter-
action while the 7/2+'state is not much affected, just as in the cases of

the odd-protons filling the g9/2 levels discussed in the preceding section.
Near N = 50 and to a lesser extent near Z or N = 40, the vibrations
stiffen and the picture once again simplifies approximately into the quasi-~
particles. It should be pointed out that bécause of the onious inadequac~
ies of the model there was no attempt to obtain the best parameters in this

region and only a few sample calculations were tried. It seems clear that
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both a better treatment of the phonon-quasi-particle coupling and the int}o-
duction of the neutron-proton short-range will be needed for a semi-quantita-

tive treatment of this region.

D, Energy Levels of Odd-0dd Nuclei

Owing to the large number of low lying levels, both theoretical
and experimental, in odd-odd nuclei, it would be difficult to use the energy
level systematics to help determine the parameters of the theory., However,
the odd-odd levels can be shown to be consistent with the theory parameters
determined from other data (particularly the odd-mass level energies). All
the levels of odd-odd spherical nuclei of known spin and parity may be de-
scribed consistently as a state of the lowest (or other low) Proton quasi-
particle coupled with the lowest (or other low) meutron quasi-particle,
The effect of a coupling of the quasi-particles to a phonon vibrator is
suggested in a few cases to be discussed below, and the coupling force between
the two quasi-particles (which we shall not discuss here) shows itself in the
fact that only one or two of the angular momentum states arising from the
proton-neutron quasi-particle pair are seen in the low energy spectra. (No
coupling force would imply a degerate multiplet of lewels which is not seen
experimentally).

Since the quasi-particle energies correspond to the odd-mass low energy
spectra, and since the parameters were chosen to agree (as well as possible)
with the experimental odd-mass spectra, the above description of the odd-odd

states means that these states are made up of the angular momenta appearing
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near the ground state in the adjacent odd mass rmcleil9. This description
is used by Brennan and Bernat.ein20 who in addition deduce coupling rules, In
general we agree with their assignment of the P-N configuration (P=N quasi-
particles in our case), however we will note a few exceptions.

For P< 28 N > 28 all the odd-odd levels of known spin and parity can
be fit with an 1'7 /2 proton quasi-particle and a Py /2 or fs /2 neutron quasi-
particle. For P> 28 but N < 42 there are three cases for which Brennan
and Bernstein make the P,N assignments p3 /2 f5 /2 for a 1+ state. For
29Cug.6, and BIGAgg a more likely assignment would be Py /2° Py /2 as the B
decay (/+ —» 0+) rates have log ft values of about 5.2 (see the section
on p decay of even-mass nucleis In the neighboring odd mass muclei the B

decay rate is known for six proton -p3 /20 neutron -f transitions and the

5/2
log ft values range from 5.7 to 7.4 We agree with their assignment for

35Brzg for which the log £t of 8.4 suggests that it is £ forbidden. It is

a bit surprising to find the 1‘5 /2

For 42 < N < 50 many of the levels have an L= proton and a 39 /2 neutron.

neutron quasi-particle so low for N = 41,

There are, however, four cases with N = L3, 45 where a l+ level has a fast

B decay (log ft ~ A4.6) to the adjacent O+ ground state. This must have

the p3 /2 proton coupled to the Py /2 neutron. For n = 43, 45 the &g /2
neutron quasi-particle lies —~ 0,2, 0.6 Mev below the 12 /2 quasi-particle, but
the particularly strong coupling of the P /2 quasi~particle to the phonon
vibrator lowers the Py /2 level to an energy comparable with the & /2 energy.
For P< 50, N> 50 the positive parity levels are explained as a 89/2
proton and a 57 /2 or d5 /2 neutron, There are a number of negative parity
states explained as n /2 protons with a d5 /2 neutron, Such levels occur e.g.
for Z = L5 where once again the phonon coupling is important in bringing down
the P /2 proton level enough to competé with the & /2 proton level, Brennan
and Bernstein assign P = (g 9/2“)7 /2» N = d5 /5 to four 1+ levels in this
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region, All of these have fast B transitions to the neighboring ground
state O+ the average log ft = 4.7+ This would suggest P = g9 /2 N = g7 /2
to be more reasonable, Brennan and Bernsteins! assignment comes from the
neighboring odd mass ground states which are in some cases 7/2+ and 5/2+.
The B decays betwecen these levels are seen in several cases and have in
general ft values an order of magnitude or two higher than the 1+ - O+ ftis,
This argument is weakened somewhat by the occurrence of two fairly fast
7/2+ - 5/2+ B decays in this region with log ft ~ 5.0.

For Z > 50 N € 82 all the odd-odd levels of known spin may be
obtained from a d5 /2 or g, /2 proton quasi-particle coupled with a 5, /22
43/2

protron state which is often low-lying in this region. For N > 82 up to

or hll /2 neutron. Many of these states could be composed with the 1/2+

the deformed region, the neutrons move in the h9 /2 and 1‘7/2 levels. The
odd-odd nuclei with 186 € A <206 have mostly negative pariiy levels which
can be explained among other possibilities as an hll /2 proton and an 113 /2
neutron, The few positive parity levels for A > 200 can be formed from an
hll /2 proton and an f5 /2 neutron,

It is seen that no difficulties arise in describing odd-odd nuclei on
the quasi-particle basis, but to use the theory to predict level positions
quantitatively, it would be necessary to include accurately residual inter-

actions that have not been considered here,
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IV, ODD-EVEN MASS DIFFERENCE

There is now available a large body of data on nuclear masses of
sufficient accuracy that it may be possible to see finer details of shell
and interaction effects. The pairing force acting between pairs of protons
and between pairs of neutrons produces the types of odd-even mass difference

which are observed exper:lmentallyé’zl. We define three odd-even mass differ-

&

ences

P, (z,N) = E(Z-1,N) + E(Z + 1,N) - 2E(Z,N) (56)
P, (2,N) = E(Z,N1) + E(Z,N + 1) - 2E(Z,N) (57)

Pnp(Z,N) =E(Z+1, Nwl1l) +E(Z -1, N+1) - 2E(Z,N) (58)

where in (56) Z is odd, N even; in (57) Z is even, N odd; and in (58)
both N and Z are odd integers, E(Z,N) is the binding energy of the
Z,N nucleus. Aside from the effect of the long range part of the force,
which we ignore, these mass differences are simply related to the quasi-
particle energies. P P compares an odd Z nucleus to the adjacent even-even
nuclei and should thus just be equal to ZEp, twice the energy of the ground
state proton quasi-particle, Similarly PN = ZEN and PNp = 2E.N + 2Ep where
E represents in each case the ground state quasi-particle energy.

To test the agreement between the theoretical E's and the experimental
P's we plot all the experimental data for Pp(Z,N) with 2 as the abscissa,
see Fige. 33. On this same graph the heavy line is ZEP(Z). Actually Ep‘
depends on N as well as Z, but to make the plot readable we simply average over
this small N dependence for each Z value. Similarly on an N scale we plot
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all PN(Z,N) data against ZEN(N) averagirg over the small Z dependence
of the theoretical energy, see Figure 34. Tae theoretical curve 2EN shows
considerable structure including a sharp dip at N = 50,82,126 and a less marked
one at N = [0. Eaci of these features is also seen in the data although
there is considerable scatter of the points. Also the overall trend as a func-
tion of N is well represented by this choice of parameters, The theoretical
EP curve has less noticeable structure showing a little dip at Z = 50 and
otherwise being a decreasing function of Z to Z = 82, The experimental
points show a large scatter with little structure. A general decrease in
PP‘is only seen in that the points above the deformed region 65 « Z <75
are lower than those belcw.

The quantity 2EP + ZEN depends equally strongly on Z and N. To
show any possible structure of the data without resorting to a two dimensional
plot we produce all the PPN data on each of two plots once against Z and
once against N as the abscissa (see Figures 35, 36). As the scatter of
the data does not seem to justify a more detailed comparison the plots are
compared to the theoretical curves averaged on N and Z respectively for
the two plots. The main structure noticeable in the theoretical curves,
the dip at Z = 40, N = 50, shows up even more strongly in the experimental
points. The lowest points are for 2 = 39 where the isolated p 1/2 level
'is filling giving a small effective degeneracy and thus a small energy gap,
while the 2 = L1 points are higher. This effect is also observed in Pp'
The smaller dip at N = 82 can also be seen in the data and the rapid drop
as N approaches 126 is also reflected in the data. For Z>l§,‘ N > 60 the
magnitude of the theoretical curves and experimental points agree well, but
for the lighter nuclei, while the theoretical curves rise higher, the experi-

mental points have a constant average magnitude from A~ 50 to A~V 130.
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This is in opposition to the PN data which shows a8eady rise with decrcas-
ing A in this region in ugreement with the theoretical curves. Although
there are some discrepancies, it is seen that the pairing force model can
account for shell and sub-shell effects in the even-odd mass differences in
some detail. It is clear that forces other than the pairing force must be

included to account for the large fluctuations.

V. MAGNETIC DIPOLE :1OMINTS

A. Magnetic Dipole Moments of Odd Mass Nuclei

The magnetic dipole moments have played an important role in the shell

model since its earliest beginnings, and from them we have been able to

derive important properties both of the nuclear coupling scheme and the
nuclear forces, From the observation that in many instances the experimental
values of these static moments for odd mass nuclei tend to be associated
with the value one would expect with a single particle in a level with the
spin and orbital angular momentum of the state, one can conclude that the
coupling scheme must be similar to that suggested by Mayer and Jensen
("simple“seniority) for these regionszz. In other regions they provide
evidence for the deformation and offer some quantitative information about
the collective properties of the stateszB. For the spherical nuclei we attempt
a detailed study to try to derive in terms of particle coordinates both the
important particle and collective effects involved in producing deviations

of these moments from the single-particle values,
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l. Quasi~Particle and Collective Contributions

The operator for the magnetic dipole moment in the quasi~particle

representation is

t 1-m
m im Co*Asg )
p =Fa'i(J'II,“"j>E(UJ'UJ'VJ'Vf)ﬂ,’}‘J fg‘_(UJ-VJ"UJV:)')(AJy +(-1) AJJ
o 1]

(59)

in terms of the single particle operator A = Qs S,*Fa £, with
gg = 5.585 (~3.826) and g = 1(0) for protons (neutrons), The operators
'nj and Al* are the quasi-particle scattering and double creation
operators, respectively, of rank one., ( See Cpt.II and Appendix I)

This operator nmust be evaluated in the states of one quasi-particle

with various numbers of phonons
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which have been discussed in Cpt, II. It is clear that the N and A+ parts
of the magnetic moment operator are of entirely different character, since
the N operators do not change the number of quasi-particles, while the
other terms create or destroy two quasi-particles. Although the A*' terms
are almost entirely responsible for the Ml transitions between the collective
states, and are treated in Cpt. VII, they play a very minor part in the
calculation of the magnetic dipole moments, and are neglected here. The N\
terms contribute both from the quasi-particle and the phonon parts of the
wave functions. B It is convenient to approximately separate this opgrat.or

into two parts, one of which operates only on quasi-particlesand the other



on phonons.
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This is possible because of the adiabatic character of the vibrational states,
which enables quasi-particles to be distinguished from phonons to a good
approximation as long as the first vibrational level is well into the gap.
The operator R, appearing in Eq. (60) is the collective angular momentum
operaior, which is diagonal in phonon number and has diagonal matrix elements
in states OC‘:"‘P. s [ob}, B']Jn \K, and [d,;' [B'B'JJ ij ‘{).

which are given in Appendix III; Egqs. C(1), C(2), and C(3). In Section B
the phonon g-factor, Bps is derived, and the results of systematic aalcula—n
tions are presented, but in the calculation of the odd-mass nuclei we use

Y Z/A, since the results are insensitive to this value.

The only non-zero matrix elements of the particle part of the magnetic
moment operator, ,6( T defined by Eq. (60) are for statesof no phonon
diagonal in the quasi-particles, states of one phonon diagonal in the quasi-
particles or with quasi~particle 6pin-orbit pairs, and states of iwo phonons

diagonal in the quasi-particles or with quasi-particle spin-orbit pairs,
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From Eq. C(3) one can see that the weak coupling limit for the magnetic
dipole moment is just the single particle (Schmidt) value, A, ,

and the only deviations from the shell model results are produced by the
collective effects in this approximation. In Ref. I the coefficients

were determined in perturbation theory and we shall not repeat those results
here, In this work we determine these coefficients by the method derived in
Cpt. II. However, the qualitative conclusions of Ref. I are unchanged, i.e.,
that the phonons themselves do not contribute very much to these moments,

but that the major effect is due to the admixture of other quasi-particles;
and that the predicted deviations from the single-particle values are much

too small to account for the experimental results.

2. Higher Seniority Contributions

In the spherical region, the major cause for the deviation of the odd-mass
magnetic dipole moments from the single-particle values for one shell model
configuration is the admixture of small amounts of other configurations of

2l and Arima and Horiezs’26

higher seniority, as Blin-Stoyle have demonstrated.
Although the wave functions (54) deviate strongly from pure seniority one,
neither the pairing nor the quadrupole for;e can account for these particular
types of configuration admistures., For this reason we calculate the additional
contributions which arise from a S ~function interaction in the manner
described in Ref. I.

Systematic calculations of this effect have been carried out by Freed

27

and Kisslinger ', We now sketch the manner of calculation, From the quasi-

particle states are projected states of the proper number of particles
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in which ne‘( n ) is the number particles of the even (odd) type. The
other notation is that of Ref. 27. The n, are even, p is odd, J;"* (o)
indicates the seniority zero state of n, particles in the ji level, and jp(j)
is the seniority one state of particles in.the j-~level, The admixture co=
efficients a(e) and a(o) are given by
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The subscript c¢ stands for a configuration Dy, Ny, °°° for the evens

or n), n,---p for the odds, With the § -function interaction between

all particles which was the same used by Arima and Horie, V(; = 8"(”‘02‘5)\/, S(;ﬁ,i‘{:!ij)
to each of the even and odd configurations in Eq. (62) are admixed configurations
of seniority two or three, respectively, which are important for the magnetic
moments, These are configuration admixtures in which particles in spin orbit
doublets are coupled to angular momentum unity, the rank of the dipole moment

operator, Since this is discussed in detail for pure confi;urations in Ref.

26, we do not give those results here.



55

As a result of these configuration admixtures, the magnetic moment of a
quasi-particle of orbital angular momentum £ and angular momentum J is
altered from /“S‘p.u‘” to

) (@) 0 2 (o)

ﬂ;/,'(u') = /J"P'(LJ)‘ +§”°I a1’ M, +¢§o c’ac I EH (64)
In Eq. (64), the sums run over the configurations with even and odd numbers
of particles. The procedure for calculating the changes in the magnetic
moments due to the admixtures to the even and odd types of configurations,

(@) (o)
S/l, and Sﬂc , respectively, is exactly the same as that
described in Ref. 27 except that in the present work harmonic oseillator wz:_ve X
functions are used for the radial integrals I(ﬂiﬂ; mn') = ifRﬂ‘z Rue dn
The third column of Tables I, II lists these quasi-particle moments for various
states in the spherical nuclei with the same parameters for the pairing force
and the single particle energy levels as are used to obtain the energy system-
atics discussed in Cpt., II1I,

Having calculated these quasi-particle moments, one simply combines these
results with those of the previous part to obtain the magnetic dipole moment
of an odd-mass nucleus, Separating the contribution from the zero-, one- ,

and two= phonon parts of the wave function, the final result is
| DAY U (LY + by + s
(Y51 M1 ¥s) = (Cloo) Mpp.C ' ’ (65)
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and
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3. Results and Discussion

In Tables I and II are listed the experimenta128 and theoretical results
for the odd-proton and odd-neutron magnetic dipole moments, respectively, in
units of nuclear magnetons, Following Ref. 26, we use harmonic oscillator
wave fuqctions and take the quantity Vsl as a dimensionless radial integral
.C ATF , in which C is a constant. The value of C = 50 Mev is
used for all of the calculations. One can gain some systematic improvement
in the fitting of the data with some variation in the magnitude of the force
in the various regions, as is discussed below. Also, in Appendix II we
include sufficient information about the states to make possible a rapid
calculation of special cases with different values of the parameter, if this
is desired. In the tables the ground state is starred when known (column two),
the fifth column lists the contribution from the no phonon component
M= (CJJoo)lﬂ;/._“ ) , and the other columns are defined in Eqs. Cl
and (65-67),

For the most part the largest portion of the dipole moments arise from
the quasi-particle with no phonon, with the higher seniority corrections play-
ing an important role. Therefore this aspect of the calculation is an average

over the results using pure configurations, with the averaging determined by
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the pairing force. One can see that the two phonon contributions are almost
always quite small. Although the one phonon contributions are frequently large
this is usually due to the quasi-particles which are admixed with the phonon
rather than the phonon itself. To make this uantitative, as well as to make
additional calculations easier, we have also given the results with the phonon
gR- factor equal to zero —--~ thereby keeping the contributions of the admixed
quasi~-particles but neglecting that of the phonon itself. In very few cases
are the results changed very much and there is not sufficient systematic depznd-
ence upon the value of this collective g~factor to try to estimate its magni-
tude from the odd-mass data.

For the odd-proton nuclei the theoretical results are in good agreement
with the experimental data. The main errors seem to come from the treatment
of the admixtures due to the § -force. One can see that for the Tl ground
states, in which the phonon admixtures are negligible, a decrease in the
force strength C of some 30% is needed to increase the theoretical values to
about 1,6 nm. However, for the 3/2 states in Au and Ir it might be difficult
to fit the experimental values unless the admixtures introduced by the long
range force are altered, for although a decrease in C reduces the magnitude
of the magnetic moment of the 3/2 quasi-particle it increases those of the
1/2 and 5/2 quasi-particles, which are admixed by the phonons.

There is also a large inaccuracy in the calculated value of the 1/2 ground
states in C5129. This is not unexpected since this is the rather urnusual state
arising in the zeroth order from the 5/2 quasi-particle coupled to cne phonon
and is therefore especially sensitive to the parameters (see Cpt. III). 1In
fact one can see thut only a moderate increase in the admixture of the 5/2

quasi<particle and one phonon component of the state would be needed to increase
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the theoretical value to l.4 nm, since the 5/2 quasi-particle has the largest
moment of 3,61 nm for this isotope.

The results for the 1/2-states are of special interest. Although the
configuration mixing due to a § —function force is unable to alter these moments
from the single-particle values, which is an important argument for the validity
of these methods since the experimental values are also close to the single-
particle valueszL, the configuration mixing due to the phonons is able to

accomplish this. The best systematics are found in the Ag isotopes, from
which one sees that the magnitude of the shifts from the single-particle value
are in general agreement with the experimental results. This is the clearest
case for which one can separate the effects of the long range force {rom the
short range { _¢z for the magnetic dipcle moments, There is no indication of
a need for a quenched particle moment.,

The numerical results for. the odd-neutron isotopes are not in as good
agreement with the experimental values as for the odd-proton cases. In the
lighter isotopes the calculated results follow the experimental trends but vary
too strongly from the single-particle values. However, a decrease of the
constant C by about 204 would bring all of the theoretical results into
satisfactory agrement for this region. For the isctopes above the deformed
region a large change in the value of the strength of the §~force is called
for. A choice of the constant C of 25 Mev instead of 50 Mev would bring the
13/2 and 3/2 states into approximate agreement with the experimental values
without changing the 1/2 quasi-particle moments, which is consistent with the

results for odd-proton nuclei in this region.
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The large discrepancy in the moments of the 1/2+ states in Te and Xe is
due to the large phonon plus 3/2 quasi-particle component. This could mean
that the wrong spin 1/2 level is dropping down, a result which could follow
from a relatively small change in the unperturbed states before the quadrupole
force is included,

The general conclusion for the magnetic dipole moments is that there are
a number of different effects which are important for at least some of the
nuclei, and that one must include all of them to gain quantitative agreement
with the systematic data. However, since the phonon contributions are often
about equal to the decrease in the no-phonon contribution from the pure quasi-
particle value, the final numerical result is often similar to the pure quasi-
particle moment, although the interpretation is quite different. Thus these
moments are seen to be rather insensitive to important nuclear structure con-

siderations.

B. Magnetiec Dipole Moment of One-FPhonon States

In the preceding section we have used for the g-factor of a phonon, Eps
a value of Z/A which is the approximate prediction of the collective mode123.
In this section we evaluate &p in terms of particle quantities. It is the
scattering terms Y\ in the moment operator which lead to a non-zero moment,

From Eq. (59) the magnetic dipole moment of a phonon is

1ot
/4" =5 3 UNAIIICU UV, Vi) < Yo BIM 1B YD, (68)
J
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The matrix element in Eq. (68) is evaluated by taking the commutator

WIBN, BIIW> = (0, BB WD + <4, 18,15, B' )

~ (‘Vo'ﬂjq ?o) + <W¢ [‘B)nj'-l] B' Wo) ’
(69)

in which the Sawada approximation, [B, B+] = 1 has been applied in the first
terms This first term, which involves the interaction between quasi-particles
in the ground state is generally considerably smaller than the second term,

and is neglected henceforth. Applying the commutation rule for

L am Tam
[fna.b . A ed .] Given in Appendix I, Eq. (AL),

m -k
and the analogous commutation rule for [ na.b . Acd ] one finds that

K o S8 R audd (U, v+ V) Clon W(a'2d"392)
WY '
A (3" R (44" + AoWI 20039 T, (70)

in which the r, and s,6 are the coefficients which appear in the expansion
of the phonon into quasi-particles (Eq. 34). Writing this out fully, one has

Ph 12 NEW T IMMNI> (U, Us Vo V) W1d'237592)

= 85 - Caoa .
FRAR )
(E, + ey +2E, )G 3»‘.1")(.:'»;".)”)

o(Uy Vo YV, ) (U Y Ur Vi) [(£y4+ Ejn)= w>] [Eyr + Es “wy ()

N, is defined by Eq. (94).



61
The results of sample calculations for the parameters used in Cpt. III

. are given in Table III.

VI. ELECTRIC QUADRUPOLE MOMENTS

Although the experimental data for quadrupole moments is less extensive
and often less reliable than that for magnetic dipole moments, it offers new
possibilities for information about nuclear structure. In the first place,
even in the Mayer-Jensen coupling scheme the quadrupole moment changes from
a maximum positive value for one particle to a maximum negative value as one
adds pairs of particles, so that the magnitude of the moment gives information
about the filling of the particle levels. As was pointed out above, if one
knows the occupation numbers of the particle levels in the pairing scheme,
one completely specifies the wave function, so that in the absence of other
effects the quadrupole moments provide quite direct evidence about the wave
functions in our model. However, the other point in which there is a strong
qualitative difference between the systematics of magnetic dipole and electric
quadrupole moments is large additions to the quadrupole moments which arise
from the admixture of phonon states to quasi-particle states, so that the

particlé contributions are often considerably smaller than the collective ones,

A, 0dd Mass Nuclei

1. Quasi-Particle and Collective contributions
- The expression for the quadrupole operator in terms of quasi-particles
’ 1
has been given in Cpt. II, Eq.(17) (here we include the extra factor of (i6T/5)*

to conform to the usual definition)
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H 1 m~ 1.
Q. --'(‘r"h:/es')JF6 'igud [%(Ujvj,ow.\b)(A;J +0 Ay )

+(U3UJ' '%Vﬁ’)’l?.j 1. (72)

For the evaluation of this operator in the states of odd mass nuclei (see Eq.
(54) the 'Y\ terms connect the parts of the wave function with equal numbers
of phonons, while the At terms change the number of phonons. Let us first
treat the latter terms,

Because of the nature of the collective states as quadrupole vibrational
states, in case of competition between particle and collective parts of the
wuve function, we can expect the collective aspects to be much larger for the
quadrupole operator. Therefore, in evaluating the At terms in Eq. (72)
we can neglect the quasi-particle contributions compared to the phonon contri-
butions with an accuracy which can be estimated by comparing the single-particle
E2 transition rates to the experimental values, i.e., with an error of less than
ten per cent in most nuclei. 1In fact, since the quasi-particle transitions
are hindered for E2 transitions (see Cpt. VII), the accuracy is probably consider-
ably better than this in most cases. The most important part comes from the
off-diagonal elements between the one-phonon and zero-phonon states, The matrix

element involved is

VRN LY +
(W, iy 1 QoI E0 Byl o> T e’ Gl @o LB 0l ¥ >

(73)
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This is most easily evaluated by recoupling the phonon operator to the

quadrupole operator:
3-J 249

~ J .*' l)ji
(‘%du,'laol[o(zs,af_]‘m‘%) 20 Comm g[(:u )as+

t

in notation indicating that the quadrupole opcrator is vector coupled to the
phonon operator, which is in turn coupled to the J' quasi~particle to form a

quantity of angular momentum J. One can take advantage of the fact that

t
(¥, 9, 1B =0, (75)
tq° +1°
to replace the factor [Q B'] by the commutator [Q, B'] which we
’
define by
< " bt pr2s
[Qo,Bt]M :2[&, QBM” Jc"mh-‘l"
m (76)
Using the approxinate commutation rules (26), this commutator is
s [ . ) . -
[a-‘,B’] E ssoz Z eefr UiV, +V U< g > 1 (n, 000+ D3V,
1y
U (77)

which is the result used to obtain the B(E2)'s, Obviously, this result must
be intimately connected to the B(E2)'s, since the same operator is involved,
and the expression for the matrix element in question, with the above approxi-
mations (which, essentially, are the distinguishing of the quasi.particles

from the phonons), is simply
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il i) By ¢ [fff.i&m] (B »]* (78)

These matrix elements give most of the contribution of the AT~ terms in
Eq. (72) and aré the only ones included in our calculations.

In evaluating the 7\ terms in lq. (72), we make the same type of
approximations as were used in the case of the magnetic moments (see Cpt. V,
Al)., However, we shall keep only the one quasi-particle matrix elements of
T since the one phonon and two-phonon matrix elements are never more than
about 25% of these terms. Moreover, (for the quadrupole moments) the purely
collective contributions from the A-r (derived above) are usually consider-
ably larger than the\ contributions, It is easy to see that the collec-
tive contributions to the one-phohon diagonal matrix elements are of the
same magnitude as the quasi-particle contributions, and they are also ignored.
The matrix element of the YL terms in the state of one quasi-particle and

no phonons is

- 1 ¢ 23 i At
App. = Moty Qo ¥, > = - €, (U=V;") Z5 <IATHS | 5
which is the same result as derived in Ref. I. However, in addition to
the pure quasi-particle results, there are contributions of about equal

magnitude from the admixture of other configurations. This is treated below.

2. Contributions from Configurations Admixed by a S ~Function Force

Just as in the treatment of the magnetic dipole moments, there are
certain configurations admixed by a § -function force, or any other short
range force, which are not admixed by the pairing or quadrupole forces in

the approximations used in this work, but which contribute to the quadrupole
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moments amounts of the same general magnitude as the single-particle contri-
butions,

On the other hand, one has already included a certain amount of configura-
tion mixing by introducing the effective charges CQEF in Eq. (47). These
effective charges are presumibly due to the polarization of the closed shells
by the particles in the major shell being filledz, and are associated with
configurations at the energy required to break a double closed shell, The
configurations considered in this section are essentially associated only
with the particles in the levels being filled, and are at energies of the
magnitude of the gap, which is considerably smaller than the energy needed
to break a closed shell (an essential assumption of this model). Still, the
separation of these effects is not at all complete, and effects suchas the
blocking of scme shell mecdel levels by adding particles outside the closed
shells will also change the magnitude of the effective charge which arises
from the closed shells, Thus the calculation of this section also gives an
estimate of the magnitude of changes in the effective charges as one fills a
majpr shell,

Referring to Eq. (62), for both the odd and even pure seniority one
and seniority zero configurations there are additions to the quadrupole
moments., Let us refer to the state in which the odd number of particles are
in the Lo Jo level, with p odd particles in a particular configuration.
For each level in which there is an even number of particles, i.e. le iﬁ‘ZW
whether of the even or odd type of particles, there are admixtures to the

quadrupole moments of the form

_~(2do +1-P)f (80)
sa’%?‘lo T A€ +2E5
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In Eq. (80) the factor f depends upon the single-particle values
for the f 's and J's, the occupation numbers, the force strength Vs, and
the radial integrals. The explicit form is given in Ref. (26). In the energy
denominator, when the admixed configurations involve elevating a particle to
its spin orbit partner we use the parameters of Cpt. III or 7(221 +1) A7 3
Meve There are also admixtures for which A€i ie zero. These are simply
the broken pair contributions of spin 2 which give the major effects for the
additional quadrupole moments arising from the corifiguration mixing of the
particles in the shell being filled. The quantity ZEs is the energy for the
lowest excitations which break a pair, and is used to represent the average
energy to break a pair for each of the pure configurations. There are similar
equations for the admixtures from the odd level, which can be found in Ref,
(26), and which are treated in the same manmer,

Referring to Eq. (80) one can see that there is a slight complication
for these admixtures to the moments compared to the analogous magnetic dipole
moment calculation, since the admixtures of the even type depend upon p, the
number of particles in the odd level. The physical ‘ixvxterpretat.ion of this
fact is that the quadrupole moment for a half-filled subshell is zero, for a
shell less than half-filled it is negative and fér more than half-filled it
is positive, Thus, if for each p the 6@ 2: 1L are sunmed for the
even type with occupation numbers Dy, Ny eee, and this is referred to as
5@ .
configuration n), Ny °°° is

» the resulting change in the moment from the even

BVEN (81)

8Q'nm‘... = % Pp Sa;m‘,.v. 3
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where Pp = probability of finding p particles in the j-level.

(124

§Qc

odd configuration, is calculated as in Ref. 26 with the modifications

, the change in the quadrupole moment arising from an

mentioned above., Therefore, we obtain as the electric quadrupole moment

of a quasi-particle

i . . .
c . S ren s, 2y 297 A D>
Qpp €D = €, [“2] -V S55 il
>
EVEN ¢ ), Qop
+3 ef“ | a‘:’ ‘t §Q, + éueeu lae | $§@e ‘
&VEN C

(82)
Finally, combining Eq. (78) and (82), the electric quadrupole moment is
' o rieio et
j \raC . g5 J [y ] L’B(Ez .

(1B =(Chon) G189+ 5 Gl (©)

The results are given and compared to experimen'r.s28 in tables IV and V
for odd-proton and odd-neutron nuclei, respectively. The third column in

the tables gives the uncorrected quasi-particle quadrupole moments, Eq.(79),

the fourth and fifth columns give the corrected moments for two choices of

the effective ciiarges, »and Q. . isthe total result

using effective charge of 1 for the neutron and 2 for the proton. In
these tables one can see that although the phonon contribution often domine
ates, in many cases the single particle parts are as lange or larger than Qph’

and that the higher seniority terms are very important for the quasi-particle
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quadrupole moments, Qq p.* In many of the cases in which the calculated

result is too large, the use of the experimental value for the B(E2)'s

improves the comparison with experiment.

B. Electric Quadrupole Moment of One-Phonon State

In exactly the same manner as the magnetic dipole moment of the one-phondn
state was found (Cpt. V), one can calculate the electric quadrupole moment of

a phonon, The result is

o4 a2 gt lag >
Q™= <P, BB > = T Caoa Mo F, 18

. N ¥l Vi U"V'“+%"V")
(U Uy = V3V W3 5320 (U + Vi) (Ui

iy Ej4 B 9Eg ;
- IgNIDKIN gD TEirem—w ILE rEpe) - 071,

(8s)

There is not the regularity to be expected for these moments as is
expected with the magnetic dipole moments. That this is true is apparent
from the factors (Ujuj' - vjvjl) ,» Which produce cancellation and wide
variation in the results, Since there is no experimental data, we do not

carry out the numerical calculations for these phonon moments.
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VII, ELECTROMAGNETIC TRANSITIONS

Since the electromagnetic field is so well understood and electro-
magnetic radiation from nuclei has been carefully worked out the data on the
gamma transitions provides important information about many aspects of i
nuclear structure. In addition to the purely spectroscopic information which
one obtains from the general character of the multipole radiations, one can
learn many of the details of the nuclear wave functions from the transition
rates. Moreover, because this type of experimental information is so exten-
sive, it is often possible to pick out particular transitions in a number

of nuclei which stress particular parts of nuclear wave functions, thereby

providing systematic studies of various aspects of nuclear structure.

A. 0dd-Mass Isotopes

The pairing correlations play an important role in the electromagnetic
transitions. Because a quasi-particle is'composed of particles plus "holes"
in the shell model states, the transition between two quasi-particles states
involves both particle and hole transitions, or, in other words, the transi-
tion involves particle states and time-reversed particle states. This is the
origin of the result given in Ref, I, that the matrix element of single-particle
operator (@ = 210' &L bf b. in one quasi-particle state

[}

is related to the single-particle matrix elements by

Y2 ohyme [ <11 6125 Bb, |} Yo

. . (85)
2 (U, Uy - €07V V) el 014162
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where T is the time reversal property of the operator, i.es T =0 or 1
if the operator does not change sign or does change sign, respectively
under time reversal, for electromagnetic transitions the result is that
the matrix elements of the electric and magnetic 2L pole transition
operators in quasi-particle states are related to the single-particle matrix

elements by

o RYAIAYZ Y| di ™
(Wotlj o l’m(EL)lthqu = (U VeV el MEL L1,
i (86a)

> =(UVs +V V; Yl (ML Jim; >’

(86v)

Wl m [ ML) oS m; W3

since the magnetic operators change sign while the electric ones do not,
This effect wasstudied for single closed shell nuclei in some detail, and
gives an accurate estimate of some of the transition rates since for those
isotopes the effect of the long range force on the one quasi-particle states
is not so very important.

In order to carry out a quantitative study of the systematics of
the isomeric transitions for all of the spherical nuclei, it is necessary
to include the effect of the phonon admixtures., For the transitions of
high multipolarity, such as the E3 and Mj transitions, it is a good
approximation to neglect the terms in the single-particle operators which
change the number of phonons. In that case thg most important effect of the

long range force is to depbte the amount of one quasi-particle state in the
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wave function. In this approximation, the relationship between the single~

s. b,
particle lifetime, T

o and the lifetime in states kEq. (54) is

' []
— =DFr
- Tivi > (en)
9§

with this retardation factor D being approximately

E s

kN Je j"
D= (U, U T VL) (Ci;OO Gj00) | )

In Eq. (88) the upper sign holds for electric and the lower one for magnetic
transitions. The coefficients C3J0° are the no-phonon components of the
wave functions of an odd-mass system of spin j, obtained from Eq. (47).
The most useful data for systematic studies of electromagnetic transi-
tions in the one quasi-particle states is that of the isomeric transitions,
especially the M, and E3 transitions., Let us first consider the Mi!'s,
The single-particle transition rates have been calculated by Moszkowski
and others, For M4 transitions the theoretical single-particle transition

probability is approximately29

po = CimnA(AE) Sz, e
THEO ' el (39)

with C(M4) a constant proportional to the radius parameter, A, , to the
sixth power, and equal to 1.56 x 107% or 2.86 x 10~ for neutrons or
protons, respectively, for a choice of r_ = 1.1 x 10713 on, S(Jgs #ed4)
is the"statistical factor" and A 4is the mass number. The experimental

values for the transition probability Pexp is found in terms of the
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experimental half-life, T% conversion coefficient, a , and the fraction

of M, involved in the transition, F,

PEXP = Fflay Tyuedd,

(%)
The experimental results are given in terms of the reduction factor
Do = P
Exp © peP
P*[ HEOR
(91)

Results are given for the M, transitions in our regions in which the half-
lives have been measured. In most cases F 1is known from the experiments,
but in a few cases it is osﬁimated from theoretical considerations. In a
number of cases the internal conversion coefficients have not been measured

30

and the calculations of Rose have been used, If only the K and L
conversion coefficients are known, the total conversion coefficient is taken
to be a= @ (1 + 1.3 an/aK) .

The most striking feature of the systematics of M4 transition rates
is their constancy, which was first pointed out by Goldhaber and SunyarBl,
for none of th; measured rates differs from the single-particle estimate by
more than a factor of about ten. From Iq. (88) one sees that the pairing
part of the reduction factor is (U;Lh + V}V‘)z, which tends to be constant,
Since the magnitude of the one quasi-~particle component in the states being
considered is usually at least fifty percent, the theoretical reduction factor
D will also tend to be constant., Let us now look in detail at the several

regions to see if not only the constancy produced by the pairing correlations

shows up, but also the effects of phonon admixtures.



Wrsemnazun

73
In Fige 37 is contained the information about the isomeric transition

between the i and f odd neutron transitions in the Pt, Hg, and

13/2 5/2
Pb isotopes. 1In the Pb isotopes the most important effects are due to the

207 the vibration does

pairing correlations. As one removes particles from Pb
become a little softer, tendirig to reduce the calculated transition rates

a bit faster than when the phonon effect is neglected, but the experimental
information just shows the constancy expected from the pairing effects. In
any case, the fact that the Pb2O! Dyyp 1% less then that of P2 i very
hard to understand.

Following the Hg isotopes from mass 195 to 199, both the 13/2 and 5/2
states are filling, and the pairing part of the reduction factor increases.
This is partially offset by the phonon factor, which decreases, resulting
in a slowly increasing D, which is in agreement with ;iperiment. In the
case of the Pt isotopes, the pairing factor is increasing at nearly the
same rate in isotopes 193, 195, and 197 as the Hg isotopes, for the same
neutron numbers are involved, but in this case the phonon factor is quite
strongly increasing. As a result the theoretical reduction increases in
the Pt isotopes much more strongly than in the Hg, a fact which seems to be
supported by the experimental evidence,

There is a great deal of experimental information concerning the neutron
hll/2 and d3
and Ba isotopes as shown in Fig. 38, In going from smaller to larger mass

/2 levels from the M, transitions in the 5n, Te, Xe,

numbers in these isotopes one is proceeding from 67 to 81 neutrons in the 50-82
neutron major shell, Since the first fourteen particles in this shell mainly
occupy the g7/2 and 'ds/2 leielg, one is essentially going from unfilled
and d

h11/2 3/2 levels to filled ones., However, due to the fact that‘these
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two levels are rather closely spaced, the factor (011/203/2 + V11/2V3/2) stays
quite close to unity. Therefore almost any variation in the theoretical
results must come from the changes in the phonon admixtures. In the sequence

123-133

of six isotopes Te experimer.tal results show a general increase of

the Dexp factor. In the theoretical calculation there are two competing
effects, since the 03;2 coefficient increases from about 0.8 at Tblzl
3/2 v
133 A 11/2
to unity at Te"””, while the Cll/2 00

and 133. Although the detailed variation which is predicted by the theory

has a maximum at mass numbers 125

does not seem to show up, the general tendency for the nuclei to become

stiffer to vibration and thus contain less phonon admixture as one approaches
the 82 neutron number leads to a general increase of the theoretical D factor
which is consistent with the experiments.

The theoretical results for the sequence of isotopes Xe 129-135 show 2

11/2
11/2 00

coefficient, with a general increase thereafter to the case of 8l neutrons.

similar dip at the 131 mass number, due to the minimum in the C

The experimental results are in good agreement, even having a minimum at TelBl.

Finally, the three isotopes Ba133.7

have an experimental reduction factor
which increases sharply, which is in agreement with the strong phonon changes
which occur with 56 protons.

In Fig. 39 one finds the study of the pl/2 -39/2 proton transition
revealed by the Y, Nb, Tc, and In isotopes. Since the protons are involved,
the pairing factor remains almost constant and just helps to determine the
general magnitude for each element, so the variations in each element are
mainly due to the phonon. One striking result is the strong maximum in the
three Y isotopes at the 50 neutron closed shell, This can be explained

by the fact that the phonon admixtures increase as one leaves the single

closed shell case, as the theoretical curve shows. For the four Nb isctopes
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one is adding neutrons to the 50 closed shell, starting with the single

closed shell Nb91

'case. Therefore, the theoretical results display a
decreasing magnitude for this D factor, which is in agreement except for
the very uncertain Nb93 point. In the three Tc isotopes with mass numbers
93-97 one sees this effect quite clearly in both the theoretical and experi-
mental reduction factors. Finally, for the In isotopes the pairing factor
is constant and the phonon admixture is also almost completely unchanged as

the neutrons increase from 64 - 68, so the remain constant in

l13-117,

Dtheor

in agreement with Dexp'

Another interesting thing in this region is a pairing force effect
for the three single closed shell N = 50 isotopes 189, Nb9l, and Tb93.

The minimum in the reduction factor seems to come from the change in the gap
at Al particles, as was discussed in Ref. I. Finally, there is a little
information concerning the neutron pl/2 - g9/2 M, transition., From Fig.
LO one can Jjust conclude that the experimental and theoretical results are
consistent,

From Figs. 37,0 one sees that for a choice of the radius parameter
somewhere between 1.0 and 1.1 f. the magnitude of the experimental vs. theor-
etical reduction factors is in agreement. We can conclude that this extensive
information on M, transitions seems to give good evidence for the accuracy
of the wave functions which result from this method,

The experimental data on E3 transitions is not so extensive as the M4
data, and it turns out not nearly as useful for this work. The main reason
is that the best systematics concern the transition between the 7/2+ state
and the 1/2- state for isotopes in which the odd particle is in the 28-50
shell, These are just the cases with which this method seems to be least
able to deal, at least without including the three quasi-particle states (see

Cpt. III). Therefore we do not attempt to calculate these transition rates.
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The only systematic data which we can treat involves the neutron

109-11 111 127
"

h11/2 - d5/2 E3 transitions in Pd Cd™™", and Xe"" 'y In fact, this

is an interesting sequence, for the neutron Fermi level is crossing between
the two levels at about N = 63. Therefore, one can expect a sharp reduction

in the D factor at this point, since the factor (U U ~ V V) goes approx=
)

imately to zeroc there. The very small transition rates

single particle values for Cdlll and‘Pdlll seem to be correlated with this

compared to the

theoretical prediction. It is also interesting to note that noreof the

E3 transitions between the 7/2+ and 1/2- states mentioned in the preceding
paragraph have these very strong reductions, indirectly supporting the
conjecture that thoststates contain other admixtures than the pairing picture
would predict.,

There are numerous other lifetimes measured in the spherical odd-mass
isotopes. Although there is not so much in the way of systematics, there
are some interesting cases. O(f special interest are some of the E2
transition rates. Here one has the tendency for the reduction of the cone
tributions from the single quasi~-particle states, but enhancements arising
from the phonon admixtures. Thus, e.g., recent experiments on Sb123 which
show an enhanced E2 transition give evidence that g7/2 and d5/2 states

32,

contain considerable admirtures of phonon states

B. Even-Even Isotopes

1. The One Phonon to Ground State Transition
The most extensive data on electromagnetic interactions in the even~even

nuclei is on the B(E2) values for the transition from the lowest 2+ state
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to the ground state. In Cpt. II this was defined as

Be2) =<l &1 BT,
A+—>0F

(92)

Since in all of our calculations we take the three long range force parameters

equal X =X T Xa) the B (E2) can be written in the simplified
form )
¢ wp(C211) A > 2 (B B 4>
N2 UiV + Vilir) (>0 °“ 1
B = £ No [E- ‘-‘L(—'J—"—"“J'TEJ—E,;) - w*v )
(93)
where
i ;.’r,.i,)'* 2> )
r 41’( E,+E (Uv +'U V)(ﬂ-Jc*’)(Co* 4 <’I)L ‘
NU - iw 3 (E+E2) -l ar T
(94)

The theoretical values of the B(E2)!s seems to be in reasonably good agree-
ment with the experimental data 33 « One can see that there is a general
tendency for the calculated B(E2)'s given in Table VI to become increasingly
larger than the experimental onesas the vibration gets softer and one approaches

the deformed regions,
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2. The Crossover 2+ Two Phonon to Ground State Transition, 7

In recent years there have been many measurements of the B(E2)'s for
the transition from the second phonon 2+ state (referred to hereafter as
the 2! state) to the O+ ground state. In the linearized QRPA theory we
have applied here this transition is forbidden, which is in agreement
with the small B(E2) value compared to the B(E2). However, one of the

2130 2-»0
promising features of this method is the relative ease with which some

corrections can be made, For these transitions it is rather straightforward

to carry out the necessary corrections to the QRPA approximation.

The crossover B(E2) 1is defined

2 2
B = |<%NI@NFB'8"Y /AT Yol (95)

o—+2L

F is a normalization constant which takes into account the deviation of
the Bt operators from bosons for the two phonon states, This factor can
be quite different from unity when the vibrational states are low in
energy. Since the number of quasi-particles differ in the zero and two
phonon states by zero, four, etc. the At parts of the quadrupole operator
cannot lead to the transitions. Therefore, theTI parts of the operator,
which do not contribute to the B (E2)!s, are entirely responsible for the

0-»2+
transitions, which we can thus expect to be of the order of single-particle

LN taWq O
magnitude. We need the matrix element {W,{M i [BfB ] } Y.”
in which the operators have been vector coupled to total angular momentum

zero. Applying the commutation rule given in Appendix I, Eq. (AL), plus
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the condition BYL‘V, one readily finds that

Wiy, [B'8'T} W) =107 %n“,m.mﬁ,(ymwmm. W) i

Therefore, the reduced lifetime for the direct erossover transition is

¢ G
ng?) : [% 323: 10F e, (UM -V Vi) (A" Y > A3

L, kg (97
5 A (308, (30) W2d'20, 332) )
]

The results shown in Table VII are calculated by choosing F=l1 and
taking the effective charges of the proton and neutron to be egff = 2e

and 92 = e (column two), and for comparison egff =leand " _ =0

£ eff
(column three). From Eq. (97) it is evident that the theoretical results
are sensitive to the parameters both because of the cancellations due to

the factors (U v VJ,) and because of the interference between neutrons

3507V
and protons, which is illustrated by the cormparison of columns two and
three, The theoretical values are frequently an order of magnitude
smaller than the experimental results.33 One important reason for this
is the error in the choice of unity for the normalization factor F,
which can change the results by a factor of two according to rough
estimates, However, since these transitions are of single-parﬁicle
magnitude an accurate estimate of these B(E2)'s requires the use of more
detailed properties of the wave functions and én investigation of other
effects which might be important in some cases,

For the region 28<Z<40; 28<N<50 the theoretical B(E2?
values were aléo éalculated‘including the f7/2 protons ando;:§trons
from the shell below. These results are not included in the table, but

there was a large difference in the results indicating the sensitivity of
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the calculations to the parameters, especially in this region. Since
these transitions are essentially of single-particle type, the results

can be expected to depend much more upon the details of the nuclear struc-
ture than those for the one-phonon B(E2). In particular, we expect that

0->2+
with more systematic emperical data there will be more scatter in the

experimental values for these transition rates than for the transition rates

found for the one-phonon to the ground state transitions. Of course this
simple treatment of the two-phonon states cannot be expected to be very
accurate., Moreover the general tendency for the B(E2)'s to be so small
in this calculation indicates that the corrections are quite large, and
that in fact the treatment of the second phonon state as BY BY ﬂ)o is

not very accurate.

3. The ML Admixture in the Two-Phonon 2+ to One-Phonon Transition
From the magnetic moment operator, Eq. (59), one can see that in
the matrix element needed to calculate the Ml transition between the

two~phonon 2+ (2') state and the one-phonon state

(Y, 1B 44, [B'BTY 1.

(98)

only the 71 terms contribute. However, the calculation of this matrix
element is rather intricate. In this case the commutation rules Eq. (A3)
and (A4) along with the condition B‘f“o = 0 are not sufficient to
evaluate the matrix element, and one is required to make statements about
the magnitude of rather complicated terms. Because of the accurate data

it is important to carry out this calculation, but we do not do this ﬁere
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because it is not in the spirit of the rest of the calculations, For the
same reason we do not calculate the change in the value of the cascade

B(E2)'s of the 2'-2-%0 transitions from the QRPA value.

L. Transitions in Two Quasi-Particle States

As soon as one leaves the single closed shell isotopes, the
difficulty in obtaining spectroscopic information has resulted in the
situation that there is actually very little information about transitions
in the quasi-particle states beyond those studied in Ref. I. With new
experimental apparatus and techniques, one can look forward to the
possibility of systematic studies in the future. One interesting case
has been recent measurements of a highly forbidden E2 transition in
snll8 and Sn120 in states which should be rather pure quasi-particle
states, showing the particle hole cancellations predicted by the pairing

correctionsBA.
VIII. BETA-DECAY

Nuclear beta decay rates have been used in the past to help
determine nuclear spins and parities, and moreover when the spins are
known and the type of decay determined, the rates may be related to the

nuclear state involved.

A. Beta-decay Matrix Elements -~ Odd-Mass
In the same fashion as with electromagnetic transitions, the affect
of pairing correlations on the P decay nuclear matrix elements may easily

be determined. The simplest case to consider is a transition between two
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one-quasi-particle states. This will be a transition between an odd-proton
and an odd-neutron nucleus, and will thus be between a neutron one-quasi-
particlg state and a proton one-quasi-particle state. The P-operator
(99‘ for the nuclear matrix element is of single particle type ( Bi b, )
or ( k;‘ b’ ) depending on whether N—»P or P-sN in the transition. The
initial state is of the type 0(/1 N’,) or OL‘LI L}’.) depending on
whether the neutron or proton number is odd in the initial state. The
final state is then of oposite type. The matrix element M may be evaluated

in terms of the single-particle matrix element M by performing the

SDP.
quasi-particle transformation on the operator L*l) . (See Eq. (9)).

Four cases may be distinguished depending on the nuclear species
involved.

1) N-P odd jumping, ( odd N even Z)—5(N-1,Z+1), M=UNUp Mg p.

2) P-)N odd jumping, ( even N odd Z)-»(N+1,2-1), M=UNUp Mg p.

3) NP even jumping, (even N odd Z)-»(N-1,Z+1), M = F Ve M5 p.

L) PN even jumping, (odd N even Z)-»(N+1,2-1), M = ¥ VNVp Mg p.

In 3 and 4 the sign is plus or minus depending on whether the operator is
odd or even under time reversal. The above expressions differ from the
reduction factors derived for electromagnetic transition owing to the

fact that here 1 and 3 or (2 and 4) correspond to different transitions,
while in the electromagnetic case, where the same particle merely changes
levels, the corresponding 1 and 3 or (2 and 4) both contribute to the same
transition, i.e, the even jumping and odd jumping both contribute to the

same transition.
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An absolute comparison of these reduction factors with experimental
data would be quite difficult for medium to heavy nuclei. However, for
a group of one-quasi-particle transitions all between the same quasi-
particle levels, the entire dependence of the nuclear matrix element on
the particular nuclear species (i.e. on A) should be contained in the
reduction factors, the single particle matrix element being common except
for small changes due to the slow change in the shell model well shape
with A, Then for such a group of transitions (of allowed type) the comparative
life (ft) value is proportional to M.‘2 so we should have aside from the
statistical factor (see below)

£t o (UUp) cases 1,2, odd jumping (99)

ft oC (VNVP)“2 cases 3,4, éven jumping (100)

One such group occurs in nuclei 115£A4<141 betwéen the proton
d 5/2 level and the neutron d 3/2 leveidiiie Fig. 41.) The figure shows
experimental log ft. values minus log T3 and compares them with the
theoretical reduction factors log@ci\-;and logoﬁ:)s. The normalization
C is chosen for each level pair to fit the data for both the odd mass and
even mass transitions (see section B below). On each plot a small arrow
marks log C. The statistical factor (2Ji+l)/3 is chosen to make the
corresponding factor for the 1+ to O+ transitions discussed below equal
to unity. Most of the experimental ft values correspond to odd jumping
transitions., This is in general accord with the upward trend of log ft
with increasing A since filling levels means decreasing U's and thus
decreasing M and increasing ft. The few even jumping transitions which

occur for large mass isotopes exhibiting this transition ha» wer ft
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values than the neighboring odd jumping transitions. This is reasonable
since both shells are nearly filled for these isotopes i.e. V> U and

M even> M odd-jumping.

For other level pairs there is much less systematic information.
For 5724267 there are a few cases of Py/p = p3/2‘ transitions (see
Fig. 42.) It is difficult to see the effect of the reduction factors with
so few cases. Also, the excitation energy is high in some of the cases,
involving a particle from the next shell, so there may well be appreciable
three-quasi-particle and phonon admixtures to the wave tunction in those

cases.

For 694£A<87 there are about a dozen cases of a transition between
a proton p3/2 level and the neutron p1/2 level (see Fig. 43). For
these, the trend with one exception is (with increasing A) increasing ft
value for odd jumping cases and decreasing ft value for even jumping as
expected, For the excaeption, a particularly fast even jumping case
3206'3%(% - 3168Z(1)‘§ -) log ft = 4.3, the low ft value may be due
to exceptional purity (small phonon admixture) of the wave functions
owing to the proximity of the nearly magic neutron number, 4O. The
agreement here is only qualitative, but the normalization was chosen to

fit the corresponding even mass cases as well (see below).

Finally there are for 1014A <11l a few cases of a transition

ton and Fig. . -
9/2 proton and a 57/2 neutron (see Fig. A4L). The normali

zation of the theoretical curves was chosen as a compromise to fit these

between a g

data and the more numerous even A (see below) cases,
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The comparisons made above are valid only if the phonon component
(or other 3 or more quasi-particle components) of the wave functions may
be ignored or assumed to have an effect _;‘.ndependent of mass number.
Otherwise, the matrix elements to this part of the wave function must be
included. However, such a calculation can not be done without essentially
making an absolute evaluation of the matrix elements to various single
particle levels as the different levels will come in with different

reduction factors. Thus we will not attempt such a calculation here.

There is also some systematic data for unique 1st forbidden
transitions, For 89<A<97 there are a few transitions between a

proton p 1/2 level and a neutron d level (see Fig., 45). Even

5/2

if the ft value can be used as a measure of the relative magnitudes of

the matrix element, there are too few data to see a trend.

For 123€A <137 there are a few transitions between a proton

g 7/2 level and a neutron h level (see Fig. 45). Once again

11/2
there are too few data to believe the trend shown by the experimental
points although the even jumping cases here are all lower than the odd

Jumping cases.

B. Beta-Decay Matrix Elements -- Even Mass
The large majority of even mass decays procede from the ground state
of an odd-odd nucleus to the O+ ground state or the 2+ or higher
vibrational state or a two quasi-particle state of an adjacent even-even

nucleus, By far the most prevalent systematic data is for a transition
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from a 1+ state by allowed P decay to both the O+ ground state and
first excited 2+ state. For 27 transitions from 624 A<€136 the
average log ft value is 4.9 for the O+ transition and 5.5 for the 2+

transition. The spread of values is quite small (R.M.S. = O.L for O+ case),

The initial state in this case is primarily a two-quasi.particle
1
state of the type (ol,I 4 )1*{¥,> or a combination of such states. For
the O+ ground state transition the final state is primarily the quasi.

particle vacuum|{,). Thus we must distinguish two cases

1) N-»P 0dd-0dd -> Even-Even M=UyVp Mg p. (101)

2) PN 0dd-0dd — Even-Even M=VyUp Mg p, (102)

where MSoP. = é(}"ﬂh’). The operator here is the spin operator ¢ ,
and the neutron and proton levels must be spin orbit partners, If in
any cases the two-quasi-particles forming 1+ wére not spin orbit partners
i.,e, same L value, the transition would be 4 forbidden and presumably
have a larger ft value. There are three groups of nuclei corresponding

to different probable levels for the neutron and proton (see Figs. 43,

M, and l&lo)
Average
Protog Level Neutm? Level log ft
62< A< 82 P g P3 4.95
104 < A<118 g % g :21 4L.73
1182 A5 136 al a % 4.98

The reduction factor UV does not vary too much as U is a decreasing

and V an increasing function of A. The single particle matrix element
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'
of G does depend on the £ value (& &*1ll0"lL, i DL [l;;(':_t'?]z being
larger for large 2, Thus, the g :21 - g % transitions should be fastest
as they are, The above argument makes the dubious assumption of the same
overlap for neutron and proton wave functions for each set of quantum
numbers. It also assumes pure quasi-particle wave functions. The
constancy of the ft's indicates that any deviation from this picture

must have a uniform effect independent of mass,

Exactly the same reduced single particle matrix element of 9 occurs
for these 1+ ~» O+ transitions as in the’one-quasi-particle -+ one-
quasi-particle transitions previously described for the same N and P
states as those making up the 1+ level. Thus, the theoretical reduction
factor curves for corresponding single particle states are plotted with
the same normalization in the odd-even -» even-odd cases as in the
corresponding odd-odd -+ even-even plots, It is seen that this same
normalization works fairly well in both the even and odd mass cases
implying that the reduced single particle matrix elements are the same
in the two cases. This is a nice verification of the quasi-particle
picture for odd mass nuclei and the proton and neutron-two-quasi-particle
picture for odd-odd cases, It shows in fact that the odd-odd quasi-

particles are similar to the more familiar odd mass quasi-particles.

The "Experimental Single Shell Model Particle Estimate™ may be
obtained by setting the reduction factor equal to unity. The value is
marked on each figure by an arrow, This lifetime is about ten times the

value obtained (from the neutron and otk decay rates) on the assumption
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of perfect overlap between the neutron and proton orbital wave functions,
The difference is largest for the heaviest nuclei. This discrepancy may
be due to lack of overlap between the pure N and P shell model states,
the omission of coupling to phonons, and the omission of N-P shortrange

&
.forges. 35

The matrix element 14+ = 24+ phonon state may easily be written
in the QRPA approximation, but terms wi th different reduction factors for
different quasi-particle levels are involved requiring an accurate knowledge
of the N -~ P overlap of the different wave functions. For the 1 phonon

transition for an N = P case the matrix element is

. t , ot t U
M=y, a&spf‘_rm )(UP,U“,oLb,dm, +Y Ve Ly ©pr) '(d’m W.)‘\?J . (103)

Since N!', P! are spin orbit partners and for the cases considered there
is also a large amplitude for N andP to be spin orbit partners, the
main contribution to the matrix element comes from those terms of the
phonon amplitude with two identical protons or neutrons (in the initial
P or N quasi-particle state) coupled to 2+, This will be but a
frgction of the phonon amplitude, leading to & reduction of the matrix
element compared to the ground state transition, The angular momentum

recoupling makes a further reduction.
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The allowed ‘transition to the two phonon 2+ state may also be computed.

This involves corrections to the Sawada commutation rules for the phonon
operators and should thus be expected to give larger ft values than
those for the one phonon transition. This is in agreement with the

experimental observations for higher energy 2+ states,

A1l of the calculations for Figs. 41 - 45 have been made with the
assumption of pure quasi-particle states., It is not easy to see apriori
how the phonon interactions change the results because this depends upon
which quasi-particles are admixed. However, there might be expected a
tendency for the isotopes closer to the closed shells to have smaller ft

values in some cases, which seems to be born out in some of the data.

IX Conclusions

For nuclei with proton numbers between 28 and 82, with the exception
of the well-lmown deformed nuclei, w@ have calculated the low-energy
states in a shell model with a pairing force between the neutrons and
protons separately and a quadrupole force between all pairs of particles.
The Bardeen approximation has been used to introduce the quasi-particles,
which approximately diagonalize the pairing interaction, and the quasi- -
particle random phase or dilute quasi-particle approximation has been
used to introduce the phonons, which approximately account for the inter-
action between the quasi-particles due to the quadrupole interaction.
Studies are then carried out to see if the low-eéergy properties can be
at least semi-quantitatively understood in terms of these basic types of

excitations..
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In the even-even nuclei the only states for which there is systematic
experimental data are the collective states, For these nuclei one can
approximately trace the extremely rapid drop of the first 2+ (one-phonon)
state as one goes from the single closed shell cases until the energy of
these vibrational levels is about one-fourth of the gap. At about this
peint thé vibrations seem unstable in the theory and the accuracy is lost
due to the large average number of quasi-particles mixed into the ground
state. As one adds particles above the N=82 closed shell there is a
very rapid drop in the phonon energy until at about neutron number 86
the spherical shape bucomes unstable. Thus for any reasonable choice of
parameters the deformation is expected to appear rather suddenly at
around mass number 150. The transition into the deformed region above
mass number 190 is much more gradual, so that one can make the theory
predict, e.g., either that all of the Pt nuclei and say 03190 and 08192
are spherical or that all of the 0Os nuclei are unstable and only the
heaviest Pt nuclei are spherical, with moderate changes in the parameters,

Other possible regions of instability of spherical shape occur for
either protons or neutrons near the middle of the gg shell and for the
neutron defficient Xe and Ba isotopes. Ii. these cases the tendency for
deformation does not seem so strong, and with reasonable changes in the

parameters one could find consistency with a spherical shape.

For the odd-mass isotopes the two basic excitations, the quasi-particles
and the phonons, both appear in the states which we consider. Although for
the single closed shell isotopes the quasi-particle states are the only ones
for which there is systematic information, the states with one phonon

excitation enter the picture rather quickly when one has both neutrons
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and protons outside of the closed shells. For nuclei with mass numbers
100€ A<150 and 190< A=< 208 the effects, often large, of the quadrupole
interaction upon the quasi-particle spectrum improve the agreement with
experiment iﬁ“almost every case, The positions of levels which arise
from pure quasi-particle states, and the energy at which one begins to
see states which arise from one phonon and one quasi-particle states
(in the absence of the quasi-particle-phonon interaction) occur at
approximately the energlies given by experiment, within the accuracy
expected by the simple forces and aproximations used in this work. The
coupling scheme seems to be maintained especially well for the isotopes
from 5OSn t°_6ONd and one can follow a number of interesting details of

the spectra,

In the region below the Sn isotopes the general coupling schemeé seems
to be completely adequate only for cases in which at least one kind of

. particle is near the 28, 38, LO, or 50 closed sheli. The most striking

Pl R

discrepancy is the appearance of low-lying 7/2+ states in nuclei which

in a pure shell model would be described as having three or five particles
or holes in the g% level, This suggests that either the three quasi-
particle states are playing an important role or that the strong quadrupole
interaction makes necessary a quite different coupling scheme. In many
cases for Z<50 and N 250, such as the Ag isotopes, the other levels can

be accounted for within the accuracy of the methods but at this point one

is very uncertain about the accuracy of the wave functions for these levels.
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There is also evidence for the need of a neutron-proton interaction
in addition to the quadrupole interaction, In the even isotopes this is
suggested by the fact that the phonon energies for the single closed shell
isotopes cannot be fit with the same quadrupole parameters as apply for
the cases with both neutrons and protons, The clearest evidence in the
odd-mass isotopes is found in the cases with one and three particle away
from the single closed shells and in general tendencies for motion of
certain effective single-particle levels with changes in the mass number.
In addition, for the isotopes between Ni and Sr the inclusion of a neutron-
proton short range force seems to be even more important because of the
tendency for neutrons and protons to be in the same j-levels.

Although there is a large body of accurate data on the magnetic dipole
moments, one does not seem to be able to gain from this much systematic
information about the details of the wave functions for spherical nuclei,
One can see the effects of the seniority three admixtures, introduced by
the short-range force, moving the values of the quasi-particle moments
away from the single-particle valuesy but the results are rather insensi-
tive to rather large admixtures of phonons. However, one interesting
result is that the phonon admixtures can account for the deviation of the
p1 /2 nuclei from the single particle values‘ , which 1is not possible with a

& ~function interaction.

There is less systematic accurate data for the quadrupole moments
and much more uncertainty in the calculation que to the large effects of

b
the quadrupole force and the strong dependence upon the parameters., Using
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the no-phonon and one-phonon parts of the wave functions, the general
systematic experimental trends of these moments are followed by the
theoretical calculations, indicating that the most important physical
effects seem to be accounted for. As more data accumulates, more nearly
accurate calculations with further studies of the dependence upon the

parameters would be useful.

The transition rates for the oﬁe-phonon E2 transitions are generally
consistent with an effective charge of 2e for the proton and le for the
neutron, but tend to become too larye as the vibrations becomesofter.
The cross-over transitions from the two-phonon 2+ states are much more
sensitive to the parameters, depending upon the microscopic make-up of
the colle;tive sta£es in terms of the shell model particles. However,
further studies are needed in order to calculate accurately these as well
as other effects such as the M1-E2 admixtures in terms of the microscopic

structure,

The other electromagnetic transitions for which there is good systematic
data and which apparently can be easily interpreted are the M, transitions
in odd-mass nuclei, For these the effects of the pairing correlations in
mixing particle and hole transitions tend to maintain the single-particle
transition rate and are in agreement with the systematic trends. One can
also see the influence of the phonon interactions which can account for the
further systematic reductions in the transition rates which are found as
one leaves the single closed shells., In addition there is a large body of

systematic data on the B-transitions involving only the ¢’-operatar, and the
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effects of the pairing correlations are in agreement with the systematic
trends. By further calculations of transition rates with the states com-
posed of quasi-particles and bosons one will know in greater detail the

accuracy of the coupling scheme which has been used in this work.
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APPENDIX I

In this appendix we give the expressions for quasi-particles vector
coupled to form tensor operators with the usual (Condon-Shortley) phases.

The double quasi-pérticle creation operator of rank L 1is defined as

t ot .
( ) . d/' J|+ ')“' T t
34, {‘Z dJJ“mL o Z -0 'OLJ-;.’M; PJ; -,

m>o s
M, <0
] '
'"‘;7 M, >0
(A1)
242y +dr4m, 1t N
40 - m+ S eyt b1 s
J’.-m\ 1 ,m L0 J’—u’.PJ"'M My, ™, M .
M, >0 /m‘_LO
m,40
The quasi-particle "scattering" operator of rank L 1is defined as
et Jyaem, T
[ [ ' .
- {Z(-d d’Jxma Pju)"l + Z ¢ ¢Ja"‘1 d/')'-’m‘
>0 m,<0
™>0 My>0
(a2)
L4 latdn-Ma  t Ly 4d,4dy+ My =My it
+2.¢N ‘5.0 -m, PJM+Z( /) {QJ - }C»m w, M
mo .. mLo > Jl
m, <o "m, <0

The commutation rules which are satisfied by these operators are

4 l/ l; J +J1
[An. ’ L“ *J gu— SMM'(&; g-;.q'('/) ! 614513)

+ terms in N,

(A3)

nd L$$
LM zmw){um] £ Chym [S"
['nn. s May (A4)
)""+J‘+23+J3” Lé-u/ As M‘M W(S‘:‘ILJ‘J;:"S‘) j
+(~!

It is also possible to work directly with quasi-particles defined

in terms of Condon-Shortley pha.ses.36
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APPENDIX II

In this appendix tables are given for the solution of the pairing
equations Eq. (4) and for the lowest few wave functions resulting from
matrix diagonalization of the odd-A odd nucleon interacting with the
phonon Eq. (47). A table is presented for the odd particles being in
each of the major shells 28 € N < 50, 50 ¢« N < 82, and
82 < N £ 126.(Tavles A1-9)

Within each shell the single particle energies are given a smooth A
dependence of the following form:

3 o 5 :‘i £€;(2,N)
&M <€A (ArAY + o (AZAY [1=(AZA0)°] + BE;(2,N) 4

(B1)

1
The first term gives the general A~ 3 compression while the second

[}

term applies to spin orbit pairs., If in the shell both J. Lt % states

are present:

- (‘é;-;(A,) - 62,,11(,«.)) Lfrtv)

bpay = (B2)
° 0 (+1)/Cale i),
d,t'..i = +(€1_;I'(Ao)-6¢4-:"_(AO)) (1 ')/ (BB)
If only one of the levels is present in the shell:
z
-3
ey T TA A (B4)
or 2
-3 0
by = +TA (@12, (B5)

In addition in some regions, a special N or Z dependent shift was
given to a level, This is indicated hy the term A f:j (z, N), In
order that the single particle levels may easily be reconstructed by

means of these formulae, or roughly by interpolation, the values of
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EJ (A) are given for the beginning and end of each region. Furthermore,

the special shifts A€ J will be explicitly indicated for each region,
The value of G = const, x A-1 is also listed for each region,

In the tables the first column lists the isotope species with its 2
and N values and the next column the mass number. Colwans 3 and 4 list
the A and A from which E

s U V, etc, may be computed,

J h IR |
The remaining columns list the no-phonon and one-phonon amplitudes (See
Eq. 54) of the wave function of the lowest state or states of spin

listed in column 5,
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APPENDIX III

We list in this appendix the matrix elements which are used in

Cpt. V for the calculation of the magnetic dipole moments,

1. Matrix elements of the phonon angular momentum Rz :

t
Yoo RzHai VD> =0 1)

"ol B) LAt - m[6+J(.i+l)—J‘(J"+l)] _
<q)o£°"J B]JM‘Rz”:«'J" -] ]jn%> =3 ATREYD) S)ljl‘

(c2)
1y (8B iy IR, 1150 (8789720 ¥)

. c
- B[ riden- YD) >
-2 JCI+1) (RS

2. Matrix elements of the particle part of the magnetic moment

operator:
+ N
(cb“ IMZP gy ) = /‘s,f:,(ill) = Jgj
-5 €2+ -Lilr) J;,;fﬂf“i ey - %];fh)
2j(J+1) }

; Tah. LI G+ - 6]
ol oy B Yyl Ay I B T ¥y = m =22 = 7y c5)

<‘P°[d'l¢t{ B]J‘M ‘/‘S")‘[&:L:i Bt]‘jm ‘Po>

. . . . 4
=g LeLrdv DHU-i+Hieerj-2j-1+£)1% (c6)
2i(i+idfad+1) {LLE-U&;' f\{,j Vz-,')(gt ';s)‘

(Yo[d‘j' (B B)JJj'm ‘/b(}f' ‘[’d’}’ (Bt Bf-) J]Jm tr,)
= mw g;
23] +1) J
t
(Log e ey (BBIT ) [ Mgy (Tohess (BB Jjm o
(c8)
j i+ )0 Y
S WM(U,, 0, +Vhos Ve, ) L4 T4 DT L3+ DUHE-To )T )-Le4)] |
ey Ve-g ¥ Vot Ve-y) (2L+1]J(J*1) (54,-?_,).




Table A-1

28%<

2% 40

31N L9

G=24fA

The single particle neutron levels are ( € J

99

in Mev,):

f772. P3j2 Isja P2 By
-4,00 0.00  0.00 3.00 4.00 A =58
-3.27 0.11 -0.26 2,37 3.68 A =89
* For Ni the f7/2 level was not included and G was increased to 26/A .
Isotope A A A i od c%/z 2 12 cJ /12 ¢} /12 c%‘/z,z
28 Ni31 59 -0.69 1.33  3/2 .77 * -.20 .36 .37
5/2 .76 * .39 .18 -.35
28 -- 33 61 0,14 1,51  3/2 .88 * -.06 .20 .37
5/2 .89 #* .10 .05 -.35
28 -- 35 63 O.45 1.48 3/2 .90 * A7 =30 .24
5/2 .89 * -.35 -4 -.20
30 Zn 35 65 0.52  1.64  3/2 .79 W34 AL =035 19
5/2 .81 4 -.42 =25 <18
30 —- 37 67 1,27 1.38  3/2 .13 31 A9 -9 0L
5/2 .73 a2 -.53 =32 -.03
32Ge 39 T 217 1,30 92 .4 .68
1/2 .68 .36 .50
3241 73 2,95 1.28 9/2 .62 .68
1/2 .67 .39 A48
32 =43 75 3.48 1,29 1/2 .68 .39 A7
32 - 45 77 3.9 1,19 1/2 .69 .39 A5
34 Se 41 75 2,9, 1.22 5/2 .38 .07 =32 =22 .67
34 -- 43 T7 3.46 1,24 1/2 70 .38 L6
3 --45 79 3.8 1,16 1/2 .75 .37 A2
34 -- 47 81 L.23 .95 1/2 .81 7 .38
36 Kr 43 79 3.43 1.21 1/2 .68 .39 47
36 —- 45 81 385 113 1/2 .79 .35 .40
36 -- 47 83 4,20 0.92 92 .83 ~.52
.36 — 49 85 3.717 0,00 9/2 .66 -.70
38 Sr 49 87 3.69 0.00 92 .% -.33
.402r 49 89 3,67 000 92 .99 -.10
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Table A2 36< 2 <5 51< N<75 G=23/A

The single particle neutron levels are ( €; in Mev)
ds/2 &q/2 %72 M2 93

0.4 2.75 144 2,60 3.32 A =87 (2 =137

0.00 0.80 1,30 2.50 2.80 Ao= 120

Compared to the Ao values the g7/2 level is given a special shift

A& 7/2 A4 (50-2) Mev,

Isotope A A o6 i cg‘oo Cr 12 cg/z . C% /, 12 cf/z 2 ¢}, 1
36 Kp 51 87 -0.14 0,00 5/2 .83 -.05 42 .08 -.28
38533 51 89 -0,13 0.00 5/2 .59 =02 BN .03 -.07
LO Zp 51 91 -0.12 0,00 5/2 .8 -.03 .16 0L -.12
L0 -- 53 93  -0.26 0.81 5/2 .95 -.05 .15 .08 -2,
L2 Mo 53 95 ~0.26 0,81 5/2 .93 -.06 .19 .08 -.27
L2 -- 55 97 0.16 1.0 5/2 .93 -.06 -2l .08 -.23
L4 Ru 53 97  -0.27 0.81 5/2 R -.07 .21 .08 -.28
Ly -- 55 99 0.16 1.0 5/2 .89 -.09 -.23 A1 -.33
L -- 57 101 0.57 1.13  5/2 .78 -.05 -.57 .10 -.09 °
Ly -~ 59 103 0.9% 1.25 5/2 .59 .09 -.56 .01 42
L6 Pp 57 103 O.44 1,13 5/2 .85 -.05 -.A47 .08 - 14
46 —- 59 105 0.83 1,26 5/2 .76 .06 -.56 .05 .21
L6 -~ 61 107 1.14 1.31 5/2 .61 .12 -.51 .02 47
46 -- 63 109 1.4y 1,32 5/2 .53 11 -7 .01 .56
L6 == 65 111 1,69  1.32  5/2 .49 .10 -.46 =01 .57
48 Cp 59 107 0.70  1.27 5/2 .84 .05 -.51 .06 .06
: 7/2 .82 .38 -.03 =32
48 — 61 109 1.01 1,30 5/2 76 .12 -.50 .0l .32

72 9 15 -.08  -.30

1/2 .85 2 =39

3/2 =57 48 06 -.33 -.48

LB - 63 111 1.31 1.31 5/2 .66 A -.45 .01 49
) 11/2  n v .63



. Table A2 (continued)
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' Isotope A A A J cjoo cgl/ztz Cg/zlz c%/212 cij/zlz' ci’1/212

1/2 .85 36 =32

3/2 -.61 .38 .05 =34 ~.53
48 ~~ 65 113 1.59 1.32 5/2 .56 .13 -42 -0 .58

11/2 .12 .62

1/2 .83 A5 =24

3/2 .62 -.25 -.04 .37 .56
L8 - 67 115 1.86 1,30 1/2 .81 .51 -.12

11/2 .75 .60
50 Sp 59 109 0.58 1.21 1/2 .93 -.04 =34
50 — 61 111 0.88 1.24 1/2 .93 20 =32

7/2 .8 -.01 -06 -,18
50 — 63 113 118 1,25 1/2 .93 2 =27

7/2 R/ -.18 -.08 -.13
50 -- 65 115 1.49 1,23 1/2 9 33 -.20

3/2 .85 -.15 -.01 .36 .32

11/2 .87 A7
50 — 67 117 179 1.2 1/2 9 .38 =10

3/2 LR -.01 .03 .36 .16

11/2 .9 40
50 —- 69 119 2,07 1,20 1/2 LR 38 -0

3/2 .95 .08 .06 .29 -.01

11/2 .% .26
50 —- 71 121 2,34 1,17 1/2 .91 .37 A4

' /2 .% .13 .08 .20 -.09

1m/2 .9 a1
50 —- 73 123 2,57 1.1 1/2 .87 .35 3

3/2 97 .16 .08 .09 -.15

1M/2 .99 .06
50 — 75 125 2,79 1,03 1/2 .84 .30 43

/2 .9 .16 07 -.03 -.15

11/2 .% .18
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Table A3 52< 2<60 69<N =81 G = 23/A

The single particle neutron levels are ( €j in Mev):

ds/2 &2 %72 M2 Y32
0.00 0.80 1.30 2.50 2,80 A =120

0.06 0,69 1.23 2.4 2,57 A = 141

Isotope A Noob b e, c‘;/ztz cg/zm Cg/zm c2/212 nyzrz
52 Te 69 121 2,06 1.7 1/2 77 .56 .03

3/2 .80 .18 .13 .48 -.19

11/2 .81 .55
52 == 71 123 2,32 145 1/2 .M .52 .23

3/2 .81 .24 .13 33 -.33

11/2 . 9% .27
52 -—— 73 125 2,56 1.09 1/2 T Ak A3

3/2 .87 .26 .12 .12 -.33

11/2 .99 -1
52 —= 75 127 2,77 1.0 1/2 .68 .35 .58 '

3/2 .9 .25 A1 -,09 -.28

11/2 9% -3
54 Xe 73 127 2,54 1.07 1/2 .66 49 .43

3/2 .68 .30 .15 .06 ~.51

11/2 .8 -.17
54 == 75 129 2,75 0.99 1/2 61 .39 .59

3/2 .76 .30 A3 =16 -t

11/2 .85 -.49
54 — 77 131 2,95 0.87 t/2 .57 .30 .68

3/2 .80 .26 A1 =31 -.31

11/2 .80 ~.55
54 - 79 133 3.13 0.70 1/2 oSl .23 . Th

3/2 .85 22 09 .36 -.23

11/2 .82 -.53

54 «— 81 135 2,63 0.00 1/2 NN .00 77



" Zable A3 (continued)

103
Isotope A A s cioo c%/212 c2/212 °§/21z °i’/212 Ci’i/zm

3/2 .99 .00 .00 .00 .00

11/2 .99 .00
56 By 75 131 2.7  0.97 1/2 .60 L2 .58

3/2 .68 31 AL =19 -.46

11/2 .80 -.56
56 -- 77 133 2,93 0.86 1/2 .56 .32 .68

3/2 .76 .28 A2 =34 =34

11/2 .76 -.59
56 -=— 79 135 3.11 0.69 1/2 .56 .22 /N

3/2 .87 .21 .09 -.33 -.22

11/2 .85 -.50
56 —-- 81 137 2,61 0,00 1/2 .79 .05 .61

3/2 .99 .03 01 =04 -.03

11/2 .99 i -.09
58 Ce 81 139 2.59 0.00 3/2 .99 0L .02 .04 -.04

1M/2 .99 -.10
60 Nd 81 141 2,57 0,00 3/2 .99 .03 01 -.03 -.03

112 .9 ' -.08
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Table Ak 58< 2< 62 83< N<87 G=22/A

The single particle neutron levels are ( €] in Mev):

h f

o2 T2 Y32 Py L5 Pypa

-84 -.12 .63 1.60 2,18 2,76 A =141
-.%0 .00 .72 145 1,78 2,35 A, = 207

(The figure used a calculation with € h 9/2 °ne Mev. higher.)

_Isotope A A a § d c%/z,z c;’,/z12 02/212 cg/212 cf/zm
58 Ce 83 141 -0.84, 0.00 7/2 .99 .00 .00 .00 .00
60 Nd 83 143 0.8, 0,00 7/2 .99 .00 .00 .00 .00
60 --85 145 -1.39 0.72 17/2 .66 -.15 .56 .07 -.29
5/2 =32 b .18 -,20 -.13 .12
3/2 - .66 12 -.30 -.16
60 -~ 87 147 -1,19 0.89 7/2 .8 -.10 .55 .08 -.37
5/2  =.37 .57 25 -8 -.25 .2
3/2 -k .60 13 -.35 -.20
625,85 147 -1,38 0.7 772 .70 -.16 .55 =07 -.27
5/2 =32 77 A7 =09 -.12 A1
3/2 -6 .68 12 -.28 -.15
62 -- 87 14,9 -1,18 0.87 7/2 .61 -.10 .56 .08 -.35
5/2 =37 .62 .25 =26 =23 .19

3/2 =45 .62 13 -.33 -.19
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Table A5 76<Z<€82 111SN<125 G= 22/A

The single particle neutron levels are the same as in Table A4

Isotope A N c:’,/:e,2 c-;/z,z cg/zm c-,’/212 0‘113/212
76 Os 113 189 1.28 0,87 3/2 45 22 -.18 .18 .57
76 -- 115 191 1.46 0,80 9/2 .1 -.01 .80
78 Py 115 193 1.46 0.80 1/2 -,58 .60 46

3/2 .81 .28 -.13 .00 .37

5/2 .72 .05 A2 A1 -.40

13/2 .65 -.66
78 - 117 195 2,64, 0,72 1/2 .62 -.61 -.43

3/2 .85 .30 .00  -,29 .22

5/2 .85 .06 .29 .01 -.35

13/2 .66 -.66
78 - 119 197 2.81 0.63 1/2 .73 -.59 =29

3/2 .85 .26 M -.40 .07

5/2 .95 .06 -.0 -.13 -.21

13/2 76 -.64
80 Hg 115 195 1.46 0.80 1/2 -,65 .57 46

3/2 .9 .19 -.09 .01 .20

5/2 .89 .03 .32 .09 -.25

13/2 .82 -.53
80 — 117 197 1.6, oM 1/2 .70 -.58 -.37

3/2 9% .22 00  -.19 b

5/2 9% Ol .20 .00 -.23

13/2 .78 =57
80 -~ 119 199 1.81 0.63 1/2 7 -.57 .23

3/2 .88 .23 A1 =36 .07

5/2 .97 .05 .00 =10 -.19

13/2 /R -.60
80 -- 121 201 1.8 0,53 1/2 .% -.28 .06

3/2 .85 .20 22 -39 -.03

5/2 .9 .05 -.23 =15 -.07

13/2 .76 ’ -.59



,Table A5 (continued)
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. Isctope A A A cgoo c?,/2,2 02/2,2 cg/ztz cf/zm Cij3/212
80 -~ 123 203 2.17 0.38 1/2 .97 A .16

3/2 .82 16 .31 -.35 -.2L

5/2 .91 .05 ~.36 -.13 .08

13/2 .81 ~.54
82 Pg 115 197 .46 0,79 3/2 .99 A2 -.04 .01 .10

5/2 .8 .02 RIA .04 -.13

13/2 .97 -.26
82 —— 117 195 1.6 0.7 3/2 .99 11 00 -.06 .05

5/2 .99 .02 .07 .00 -.09

13/2 97 -.2,
82 —- 119 201 1.8 0,62 3/2 .99 .09 .03 -.09 .02

5/2 .99 .02 .00 -,02 -.05

13/2 .98 -.20
82 —- 121 203 1.8 0,52 3/2 .99 .08 .06 -.10 -.01

5/2 .99 .02 -.05 -.03 -.02

13/2 .8 -.17
82 -- 123 205 2,17  0.38  1/2 .99 .02 .03

3/2 .99 .05 .07  -.09 -.05

5/2 .99 .01 -.08 -.03 .01

7/2  -.03 .00 .99  -.01

9/2 .04 .00 .99

13/2 .99 -.13
82 -- 125 207 2.35 0.00 1/2 <99 .00 .00
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Table A6 292 2%<39 3, <NES50 G=2/A

The single particle proton levels are ( € in Mev)

f £

72 *s/2 P32 Pyj2 Bg/a
-4.15 .87 -.08 218 2.95 zZ=30 N=34
-4.60 -.60 .00 1.80 280 Z=40 N=50 A =%

A special shift A € 72 = AE 5/2 = ~0.11 (N-40) is included so

-]

that € °7/2(A°) = 3.50ama  E% ),

(Ao) = +0,50.

# Por Cu the f

7/2 level was not included and G 1ncrgased to 26/A.

Isotope A PN A d o, o /, 12 ] 12 ¢ ), 12 cJ 12
29 Cu 34 63 -0,08 0,00 3/2 .85 * ~.20 .33 .28
29 — 36 65 -0,08 0,00 3/2 .84 * ~.21 .32 .30
31 Gy 36 67 =0.40 .47 3/2 .79 .21 ~.18 A9 .40
31 --38 69 -0.38  1.42  3/2 .7 .21 ~.18 .20 b
33A35 40 73 0.20 1.52 3/2 .M .35 -.05 =27 .37
33 42 75 0.09 1.45 3/2 .67 .32 04 =19 A
33 -4y 77 -0,02 1,38 3/2 . .27 -.04  -.07 Al
35BR 42 77 0.59 1.8  3/2 .66 .35 A0 =51 .15
35 -4, 79 O.46 1,39 3/2 .7 .28 A3 -, 19
35 — 46 81 0.33 1.30 3/2 .85 .23 Jh =33 .20
35 - 48 83 0,20 1.20 3/2 R 19 J2 0 =19 .19
37Rg 48 85 0.77 1.0 3/2 .88 A7 A7 =38 .05

5/2 .85 .06 -45 =22 -.01
37 -- 50 87 0.68 0.3 3/2 .R 16 JAb =30 .06

5/2- .89 .06 40  -.19 -.01

39 Y 50 89 1.47 0.95 1/2 .99 A1 12




50 N= 70

108

Table A7 37< 7% L9 G = 26fA
The single particle proton levels are ( 63‘ in Mev)
5/2 P32 Pij2 Bg/2
- 0.00 0.60 1, 3.40 A= %
-0.10 0,58 2.30 A =115
A special shift A € g/2 = =055 (N-50) is included,
Isotope A A A J cgoo Cgi/2 12 C%/z 12 C‘,j/2 12 C%/z 12
37Rg 50 87 - 1.35 0.% 3/2 .9 a2 =21 .03
39 Y 50 89 1.8,  0.86 1/2 .99 .09 .09
L1 Ng 50 91 2,5, 088 1/2 B 13 A5
9/2 .8 A7
L - 52 93 2,46 0.88 1/2 .88 .29 34
9/2 .84 .50
L1 == 54 95 2,37 0.8 1/2 .85 .32 .37
9/2 .81 .95
43 Tg 52 95 2.9% ©.8 92 .% .28
L3 -- 54 97 283 0.97 92 .93 .37
43 -- 56 99 2.7 0,97 92 .9 42
L3 -- 58 101 2,60 0.9% 92 .8 .55
L5 Ry 56 101 3.05 0.9 /2 .76 .37 43
9/2 .99 -7
L5 -- 58 103 2.93 0.9 1/2 .73 .38 45
9/2 .®B -.21
45 -- 60 105 2,82 0,89 1/2 .69 .40 46
9/2  .% -.29
L7 hg 58 105 3,23 0.7 /2 .M .36 43
47 -- 60 107 3.11 0.75 1/2 .76 .36 Ak
L6 -- 62 109 2,99 0.7 1/2 .75 .37 A
L7 —- 64 111 2,87 0.73 /2 .73 .38 A5
L7 -- 66 113 2,75 0.73 1/2 .70 .39 A
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A7 (continued)

Table
109

Isotope A A a o, cg/z,z cg/zt2 cf/a,z cé)/z,z
49 Iy 62 111 2,60 000 1/2 .87 .29 .35

Y2 .85 =49
L9 =~ 64 113 2,48 0,00 1/2 .88 .29 .35

Y2 .86 -.48
L9 -~ 66 115 2,36 0,00 1/2 .87 .29 .35

92 .86 -.49
49 - 68 117 2,24 000 1/2 .87 .29 .35

9/2 .86 -
49 ~= 70 119 2,12 000 1/2 .89 .27 .33

92 .87 -7



Table A8 51<Z <61 64,SN$8 G=231A
The single particle proton levels are ( € in Mev):

872 9572 P2 Y32 %
0.26 0.78 2,29 3.5 3.59 A =115

0.00 0,80 2,192 2,60 2.9 A°=207

Isotope A A A cjoo‘ cg/zm cg/zm ] ), 12 cf/zm
51 Sg 64 115 0.26 0,00 7/2 .87 A3 A2 .15

5/2 .81 -.18 A7 .10 -.19
51 == 66 117 0.25 0.00 7/2 .86 A3 A2 -.16

5/2 .80 -.19 .48 .10 -.19
51— 68 119 0.2, 0.00 17/2 .87 43 A =15

5/2 .80 -.19 47 .10 -.19
51 == 70 121 0.23 0.00 7/2 .88 A 11 -4

5/2 .82 -.19 46 .09 -.17
51 == 72 123 0.23 0.00 7/2 .89 40 J0 -13

5/2 .83 -.20 45 .09 -.16
51 — 74 125 0.22 0,00 7/2 .90 .38 A0 =12

5/2 .84 -.20 Ak .08 -.15
531 72 125 ~0.15 0,69 7/2 .73 .52 20 -,22

5/2 .64 -.18 .57 A1 -.25

1/2 =37 T .29
53 — T 127 -0.15 0.68 7/2 .79 49 18 .20

5/2 .69 -.18 .56 .10 -.22

1/2 =37 b .27
53 - 76 129 -0.14 0,67 7/2 .85 A Jdh =17

5/2 .73 -.18 5k .10 -.19
53 -= 78 131 -0.14 0,65 7/2 .9 .36 % IR VA

5/2 .80 -.18 49 .09 -.17
55 Cg Th 129 0.10 081 72 . .27 37 -.28

5/2 .64 -1 .56 12 -.29

1/2  =.39 T .31

55 —= 76 131 0.10 0,79 7/2 .88 .22 25 =23



Table A8 (continued)

Isotope A A a J Cgoo C% /,12 C‘; /s 12 Cg/z 12 "1/2 12
5/2 .M - 11 .55 1 -.25
1/2  -.38 JTh .28
55 —— 78 133 0.10 077 7/2 9% b A3 =16
5/2 .79 -1 .50 .10 -.20
/2 -.38 .78 .24
55 — 80 135 0.10 0.76 7/2 .99 .06 05 -,09
5/2 .93 -.08 .32 .07 -.12
55 «= 82 137 0.10 0.74 7/2 .99 .01 01 -0t
5/2 .99 -.01 .05 .0t -.02
57 L, 80 137 0.35 0.82 7/2 .99 -.13 -.02 ~,08
5/2 .9 -.03 .27 .08 SR TA
1/2 =40 .85 .18
57 -- 82 139 0.35 0.80 7/2 .99 -.02 00 ~.02
5/2 .99 -,01 .0l .01 -.03
59 P 82 141 0.60 0.82 7/2 .99 -0 .00 -0
5/2 .99 .00 .02 .01 -.02
59 — 84 143 0.60 0.80 5/2 % .03 .27 .13 -.25
72 .86 -.47 -0 =,10
61 Py 84 145 0.88  0.77 5/2 .% ~.09 -.08 RY -.19
7/2 .82 ~.52 -.09 -.07
61 — 86 147 0.88 0.7 5/2 .9 2 -.10 .15 -.30
72 .M -.63 -.08 .08
61 —- 88 149 0.88 0.7 5/2 .64 .08 -.01 .21 -.50
7/2 .58 ~.68 -.06  -,09
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Table A9 77< 2% &1 1M, NS 126 G= 23/A

The single particle proton levels are the same as in Table A8

Isotop. A A a J g, C";/ztz c‘sj/zlz C%/z 12 02/212 °'111/2 1
77 Ig 114 191 2,72 049 1/2 .72 A7 -.63

3/2 .87 .22 a2 -,08 .35
77 — 116 193 2,71 0.48 1/2 .75 6 <61

3/2 .89 .20 A1 -.08 .33
79 Ay 116 195 2,89 0,38 1/2  .9% .18 .22

3/2 .87 b 09 -.42 =11

5/2  -.15 .00 .04 .86 -.29

11/2 .68 -.65
79 — 118 197 2.88 0.37 1/2  .9% .16 19

3/2 .89 A3 .09 -.40 -.10

5/2 =14 .00 .03 .86 -.29

1/2 70 -.64
79 ~- 120 199 2,86 037 1/2 .9 .15 .16

3/2 .9 .12 .08 -.38 -.09

5/2 -,13 .00 .03 .87 -.30

11/2 72 -.62
81 T1 118 199 2,99 0,00 1/2 .99 .07 A2

3/2 .97 .06 o4 =16 -.16

5/2 A1 .00 -.02 -.06 .8

11/2 .®B -.22
81 —- 120 201 2,8 0,00 1/2 .99 .06 12

3/2 N .05 04 -16 -.16

5/2 .09 .00 -.01 -.05 .®

n/2 % ‘ -.21
.81 == 122 203 2,97 0.00 1/2 .99 .05 .09

3/2 % RoTA 03 =13 - 14

5/2 .06 .00 -.01 -.03 .99

/2 .9 -.17
81 ~ 124 205 2.9% 0,00 1/2 .99 .02 .05

3/2 .99 .02 O -,07 -.09

5/2 .03 .00 .00 0199

1m/2 .9 ‘ -.09

81 -- 126 207 2,95 0.00
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FIGURE CAPTIONS
: 2 (YK
Fig. 1. The coupling parametegx%zﬂ r A chosen to bring E2+ into
agreement with the experimental data. The quantity <:r2:zl is the
matrix element of r< in the most usual orbit of the shell under consid-
eration.
Figs. 2a, 2b, The experimental E2+ compared to 1% W computed with a
fixed }K in each region. The semi-closed shell nuclei are indicated by
triangles. Isotopes of the same Z (indicated on the figure) ar; connected
~5/3
by light lines. In each region X is given a dependence of A for which
- -f P -
we define XA 3 X/Z | The value of X used for each region is indicated
on the figure,
Fig. 3. Energy levels of odd-mass Py isotopes. The pairing and single
particle energy parameters are given in Appendix B; the long range force
is chosen to fit the even-even spectra. The experimental points are given

as open circles and the theoretical results as solid lines.

Fig. 4. Energy levels of odd-mass Hg isotopes.

=y

ig. 9. Energy levels of odd-mass Os and Pt isotopes.

Fig, 6. Energy levels of odd-mass Tl isotopes.

i

« 1. Energy levels of odd-mass Ir and Au isotopes,
Fig. 8, The effect of Quadrupole interaction on states of odd-neutron
nuclei above the deformed region. The quasi-particle energy levels in
the absence of the quadrupole interaction are given as solid lines while
the low-lying states in the presence of the quadrupols interaction are given
as dashed lines. The experimental ground state spins are included.
Fig, 9. Energy levels of odd-mass Sn isotopes,

Fig, 10, Energy levels of odd-mass Te isotopes.
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Fig. 11. Energy levels of odd-mass Xe isotopes.
Fig. 12. Energy levels of odd-mass Ba, Ce, and Nd isotopes,
Fig. 13. Energy levels of odd-mass Ce, Nd, and Sm isotopes.
Fig. 14. Energy levels of .odd-mass Sb' isotopes.
Fig. 15. Energy levels of odd-mass I isotopes.
Fig, 16. Energy levels of odd-mass Cs isot‘c.>pes.
Fig. 17. Energy levels of odd-mass La, Pr, and Pm isotopes,
Fig. 18. The effect of quadrupole interaction on states of odd-proton
nuclei for 51<Z%<59, 6,<N <84, The notation is the same as in Fig. 8,
Fig. 19. The effect of quadrupole interaction on states of odd-neutron-
nuclei for 50<Z<60, 61<N<8l. The notation is the same as in Fig. 8.
Fig. 20. Energy levels of odd-mass In isotopes,
Fig. 21. Energy levels of odd-mass Ag isotopes.
Fig. 22, Energy levels of odd-mass Tc and Rh isotopes.
Fig. 23. Energy levels of odd-mass Rb, Y, and Nb isotopes.
Fig. 24, Energy levels of odd-mass Cd isotopes.
Fig. 25. Energy levels of odd-mass Pd isotopes.
Fig, 26, Energy lsvels of odd-mass Mo and Ru isotopes,
Fig, 27. Energy levels of odd-mass Kr, Sr, and Zr isotopes.
Fig, 28. Energy levels of odd-mass Cu, Ga, and As isotopes.
Fig, 29. Energy levels of the odd-mass Br, Rb, and Y isotopes,
Fig, 30. Energy levels of the odd-mass N, and Zn isotopes.
Fi 1, Energy levels of fhe odd-mass Ge and Se isotopes.
Fig, 32, Energy levels of the odd-mass Kr, Sr, and Zr isotopes.
Fig. 33. The quantities PP(Z,N‘) vs, 2EP(Z). The curve Ep(,Z) is Bp(z,N)
the proton quasi-particle energy averaged over N. The points are the

experimental Pp(Z,N).

Fig. 34. The quantities Py (Z,N) vs, 2Fy(N). The curve Ey(N) is Ey(Z,N)
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the neutron quasi-particle energy averaged over Z. The points are the
experimental Py(Z,N).
Fig, 35. The quantities PNP(Z,N) V8. 2EP + 2EN. For the plot against Z,
the curve for EP and Ey are averaged over N, The experimmental points
Pyp(Z,N) are the same as in Fig. 36.
Fig., 36, The quantities PNP(Z’N) V8. 2EP + 2Ey. For the plot against N,
the curve for Ep and EN is averaged over Z.
Fig. 37. Reduction factors for M4 l% + ~ g - odd-neutron transitions.
The theoretical results are given by the solid line, while the experimental
ratio of the transition probability to the single-particle value is given
as triangles or circles connected by dashed lines with the assumption of
a radius parameter of 1.0 and 1.1 fermi, respectively. The sequences
are labeled by the proton numbers,
Fig. 38. Reduction factors for M4 hl% - d% odd-neutron transitions. The
notation is the same as in Fig. 37.
Fig. 39. Reduction factors for M4 p% - g% odd-proton transitions. The
notation is the same as in Fig. 37.
Fig., 40. Reduction factors for p% - g% odd-neutron transitions. The
notation is the same as in Fig. 37. .
Fig. 41. Allowed transitions involving a d 5/2 proton and a d 3/2
neutron, odd-mass and even-mass, The o and x points are the experi-
mental log ft values including the statistical factor for odd jumping and
even jumping transitions respectively for the odd-mass points and for
P -5 N and N = P transitions respectively for the odd-odd —» even-even
transitions. The dashed O-curve and dot-dashed x-curve are the correspond-
ing theoretical curves log C/R2 where R 1is the appropriate reduction
factor UyUp and VPVN respectively for the odd-mass cases and VNUP and

UNVP respectively for the even-mass cases. An arrow indicates the value
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log C chosen to fit both the even-and odd-mass data,

Fig. 42. Allowed transitions involving a p g neutron and proton, odd-mass.

The points and curves are as described in Fig.jl odd -mass part.

Fig. 43. Allowed transitions involving a p 3/2 proton and a p‘1/2 neuﬁron,

odd-mass and even-mass. See caption of Fig.4l for details.

Fig. 44. Allowed transitions involving a g 9/2‘proton and a g /2 neutron,

odd-mass and even-masa, See caption of Fig.Ll for details.

Fig. 45. Unique transitions involving a p 1/2 proton and a d 5/2 neutron
and Unique transitions involving a g 1/2 proton and an h 11/2 neutron odd-

mass, For detalls see the caption of Fig.4l - odd-mass part,



Table I Magnetic moments of odd-proton nuclei, The isotope and
state are listed in columns 1 and 2, the ground state being starred
when known, Columns 3 and 4 list the quasi-particle (Schmidt)
moments and the quasi-particle moment corrected by higher seniority
configurations admixed by a & ~function force respectively, Col-
umns 5, 6 , and 7 list the contributions from the zero, one, and two
phonon parts of the wave function. Columns 8 and 9 list the theoret-~
ical moments with =0 and =Z/A respectively. The last column
is the experimental hmoments in huclear magnitons, The experimental
values were taken from a compilation kindly furnished by Dr. G. Fuller,

. Vtheor.
Isotope  State - Map H uy o g=o gr=Z/A Mexp
29 Cué' 3/2* 3.79 1.33 0.96 -0.10 0,00 0.67 0.95
c63 #* . .
u 3/2 3.79  1.31  0.95 -0.11 0,00 0.67 0.84
65 S
Cu 3/27 3.79 1.27 0.90 -0.12 -0,01  0.60  0.78
@7 320 379 232 a6 o5 07 17 res 190
ca®? 3/25 319 2,27 1.25 047 .09 1.2 1,51 2,02
p A 32 379 e o® 0% .0 1.89 2,05
a3/ 379 219 0.9 088 L 177 2,00 1.439
as’’ 3/ 379 221 1,20 055 a3 1.65 1.8
B0 32 379 215 0.3 085 .20 1.8 1.%
B’ 3/2 379 204 1.25  0.68 .11 1.93 2,05 2,106
B 32 379 218 1.59 049 .06 2,06 204 2.270.
B3 32" 379 2.27 1.9, 0.27 .03 2.20 2.2
81 * ¢
37Rb 3/2 3.79 240 1.15 0,35 0.10 1.47 1.61 2,05
5/2  0.86 1.32 0.75 0.68 0.09 1.30 1.51
23 32 379 2.0 1.45 0.8 0.0,  1.68  1.78
5/2°  0.86  1.33  0.91 0.5 0.04  1.31 145 1.42
15 3/2 3.79 2,09 1,61 0.25 .02 1.82 1.89
5/2°  0.86 1.35 0.97 044 .02  1.32 1.2 1.35
Y’ 32 379 220 1,87 020 .01 205 2,09 2.75
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Table I (continued)

Htheor.

Isotope  State Map u:p Mo ™ My g.=o gr=Z/A Mexp

5/2 0.86 1,32 1,04 0.35 .02 1.32 1.42
39 y 89 1/2* ~0.26 -0,26 -0,26 0,00 ,00 0,26 0,26 -0,137

9/2 6.79 6.4 5.25 0.54 .02 5.78 5.81

4 Mo 1/2  -0.26 -0.26 -0.26 0.00 0.00 -0.26  -0.26

92" 6.79 594 5.76  0.16 0.00 591  5.92

N2 9/2 0,26 -0.26 -0.20 -0.01 -.01 0.2, ~0.22
92 . 6.79  5.68 4.02 1.36 .16 5.6 554 6,17

M 1/2  -0.26 -0.26 -0.19 -0.00 =-.01 =02,  =0.20

92 6.19  5.65 3.69 1,57 .22 5.39 5.8

BT 92 679 536 LS9 067 L0k 529 5.30
% 92" 679 537 4.3k 0.8 .06 5.2 5.28  5.60

' 92" 679 533 3.50 17 .02 508 5.7
4 rn'® 12" 0.6 -0.26 -0.14 0.03 -.02 -0.18 -0.13 -0.0883

92  6.79 5.00 4.78 0.20 .00 4%  4.99

rn'®  1/2  0.26 -0.26 -0.13 0.0, =-.02 0.16 0.1
W7 2g'® 172" 0.26 -0.26 -0.16 0,04 -.01 0,18 -0.13 *0.101
ag'® 12" 0.26 -0.26 -0.15 0.0 -.02 0.18 -0.13 -0.114
6% 172" 0,26 -0.26 0.15 0,04 =-.02 -0.18 0,13 -0.131
ag'!' /2 0.26 0.26 -0.14 0,04 -.02 0,17 0.1 =0.145

g’ 12" 0.26 0.26 -0.13  0.05 -.02 -0.15 -0.10

49 % 12 0,26 -0.26 0.20 0.00 0.00 -0.23 -0.20
' 92" 679 6.01 3.60 1.5 0.2 48 4%  5.53

m''' 4/2  0.26 -0.26 0.20 0.00 0.0 0.23 -0.20
9/2° 6,79  6.03 3.67 1.3 042 485 492 5.3
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Table I (continued)

c Mtheor .
Isotope State Hgp Map Mo "y My g =0 gr=Z/A Mexp
' /2 -0.26 -0.26 -0.20 0.00 0.00 0.23 0,20 -0.21
9/2° 679  6.05 3.76 1.08 0.1 489 4.9  5.52
' 1/2  0.26 -0.26 -0.20 0.00 0.00 -0.23  -0.20
9/2°  6.79  6.09 375 1.1 0.1 49 49  5.53
' 12 0.26 -0.26 -0.20 0.00 0.00 0.2,  -0.21
92  6.79 6.1 3.7 1.0 0.1 L.9% 5.00
' 1/2  0.26 -0.26 -0.20 0.00 0.00 -0.24,  -0.21
92"  6.719 6.03 3.82 1,02 0.10 4.87 L.93
5 so'' 42 279 0.5, 042 -0.00 .02 0.2  0.12
5/2 479 2,60 1.68  0.49 .05 2.09 2,23
/2 172 3.7 2,85 073 .07 3.5  3.65
so!? 12 2,79 o062 o1 o0 .02 031 0,16
5/2° 479 2.5 1,73 047 .05 241 2,24 3.36
7/2 1.72 3.80 2,9% 0,67 .06 3.60 3.69
so'® 4/2 279 0.60 0.10 0.07 .02  0.35  0.19
5/2 479 2.56 1.75 0.5 .05 2,13 2,25
728 1.2 3.83 3.3 0.6 .05  3.6h  3.72 2,55
sv!® /2 2,79 0.58 0.09 0.1 .02 038 0,22
5/2 479 2.56 1,79 043 .40 2,16 2,29
7/2° 1.2 3.85 3.2 0.57 4k 3.8 3.75
53 1'% 1/2 279 159 022 008 .10 050 0.0
5/27 479 3.81 146 0.89 .20 242 2,55 3.0
| 7/2 1,72 2,77 14T 1,02 .25 2,50 2.73
1127 g2 2,79 1.6 0,21 0.5 a1 0.59 0.7
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Table I (continued)
c “theor.
Isotope State Mep Map M, Iy iy g.=o gr==Z/A Pexp
5/20 479 2.50 1.65  0.85 .09  2.42  2.60  2.809
7/2 1,72 2,79 1.72  0.86 .15 2,58 2.75
1'% 472 279 155 0.20 0.25 1 0.7 0.57
5/2 L.79 3.5 1.2 077 .12 2,61 2,80
7/2* 1.72 2.8t 2,02 0,65 .09 2,65° 2,77  2.617
1BV 42 279 1.6 0.20 0.3 .11 0.86  0.69
5/2 4.79  3.51 2,27 0,63 .07 2.8, 2,98
7/2* 1,72 2,82 2,32 0.43 .03 2,72 2,79  2.738
13 42 279 157 0.20 0.50 .10 1,02 0.81
5/2 4.79  3.52 2,66 0.8 05 3.09 3.18
7/2* 1.72 2,83 2,62 0.2 .01 2,79 2.83 2.8,
g5 0827 1/2 279 173 026 0.07 .10 053 Ok 147
5/2 4,79 3.6t 1,50 0.89 .20 2,26 2,58
7/2 1,72 2,52 1,39 1.04 .25 2,45 2,78
es’3' 12 279 1.3 0.25 048 .10 0.67  0.55
5/2° 479  3.63 1.80 0.83 .15 252 278  3.52
7/2 1.72 2,53 1.9%  0.54 .14 2.49 2,64
cs'>® 1/2 279 173 0.25 033 .11 0.85  0.69
5/2 4,79 3.65 2.27 0.67 .08 2.86 3.03
7/é* 1,72 2,53 2.33 0,20 ,03 2.51 2,56 2,58
cs'? 172 279 1.6 0.23 00 .07 1,22 1.0
5/2 4,79  3.69 3.18 0,27 .0t 3.40 3.6
7/2° 172 2,53 249 0.0k .00 2,52 253 2.73
e’ /2 279 1.80 0.03 142 .00 1.72 146
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Table I (continued)

“theor,
Isotope State Map ”:ja My By My g =0 gr=Z/A Moxp
5/2 .79 3.75 3.4 0.00 .00 3.7 3.7
7/2° 172 253 2.52 0,00 .00 2,52 2,52  2.84
s 52 w9 3 336 0 o1 32 35
7/27 172 2.8 2,22 005 00 226 2,27
1a'?  s/2 479 3.8, 3.83 000 .00 3.8, 3.8
7/2°  1.72 2,26 2.25 0.00 .00  2.25 2,25 2,78
o Pe'* /2% 479 402 402 0.0 .00 402 402 4.0
7/2 1.72 2,00 1,99 0.00 .00 2.00 2,00
pr'3  s/2 479 3.83 3.0  0.29 .05 3.32 3.4k
7/2 1.72 2,18 1,61 047 .05 2.04 2,12
o PRV 5/2 479 3.62 335 047 .02 348 3.5
/2 1.72 2,23 1,51 0,59 .07 2,07 2,17
' s/2 479 3.64 2.92 0.3 .08 3.21 336 (3.6)
7/2* 1,72 2.21 1.1 0.83 .18 1,95 2.12  (3.0)
P’ 5/2 479 3.65 1,51 075 .29 2,08 2,55
7/2° 172 249 075 0.97 .35 1.83 2,06
gy 1017 3/2 042 2,02 077 0.23 .05 0.9 1.05 0.18
!B 32" o042 1,02 0.82 0.20 .04 0.9  1.05 0.19
som!® /2 279 037 034 0.8 -0 0.2  0.25
3/2 0.2 0.80 0.6f 0,30 .01 0.8, 0.9
11/2 719 5.30 246 212 .49 4% 5.07
w12 279 033 031 0,06 -0 0.2 0.25 |
3/2° 042 0,79 0.63 0.27 .01 084 0.9 0,145
11/2 7.79  5.29 2,61 2,03 .43 4.9 5.08
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Table I  (continued)
c ut’.heor'.

Isotope State Map Hap o My Iy g =0 gr=Z/A Mexp

a'® 92 279 o032 0.3t -0.04 .00 0.25 0.2
3/2 042 078 0.4 0.2 .01 0.82 0.89 0.2

11/2 7.79  5.30 2,78 1,95 .38 5.00 5.10
g T /28 279 13 11 002 w00 1.8 109 157
m® 42* 279 1.4 102 000 .00 1.00 1,01 1,58
m23 42" 279 1.0 0.9 -0.00 .00 0.9 0.%8 1.6
n?5 42" 279 0.0 070 0,00 .00 0.0  0.70  1.63



Table II Magnetic moments of odd-neutron nuclei

See the caption of table I.

) c Ytheor, v

Isotope  State Mep D T I’y ko g,=0 gr=Z/A Mexp
W27 32 9 .68 040  0.54 041 0.05 0.2
5/2  1.37  0.60 0.35 0.15 0.16  0.32  0.66

v é 32" e c0.65 -0.51  0.20 0,05  -0.44  -0.25 %0.03

) 5/2 1.37 0.80 0.64L 0.15 0.09 0.69 0.8 *1.15
v 32" L. 0.8 -0.55 0.14 0.00 -0.80  -0.69
s/2  1.37 0.90 0.72 0.26 0.03  0.90  1.02
@ 32 a9 oM o5 018 00 067  -0.62
5/2 1.37 0.97 0,64 0,23 ,05 0.73° 0.9
2287 32 .9 -0.67 -0.36 0.05 .00 0,40 -0.30

s/2  1.37  0.79 0.52 0.18 .05  0.52 075  0.876
32 Ge " 4% 0.6k 0.6 0.29 0.7 0.30  0.97  0.86
9/2  -1.91 -1,20 -0.46 ~0.38 -0.07 ~1.09  -0.90
Ge P  1/2 0.6, 0.64 0.29 0.17 0.57  0.92  1.00
9/2° 1.9 -1,03 -0.40 <0.30 =-.05 0.93 -0.76 -0.879
Ge 7 1/2. 0.6L . 0.6k 0.29 0.5 0.47  0.85  0.92
a5 s/2% 1.7 o086 0.2 0.3 .8 001 0.7
se 71 1/2° 0.6, 0.64 0.31 0.15 .53  0.92  0.99  0.53%
se’?  1/2 0.6, 0.64 0.36 0.12 .40  0.83.  0.88
se®  1/2 0.6, 0.64 042 008 .28 075  0.79
3 K* 79 4/2 . 0.6, 0.64 0.30 0.16 .56 0.9  1.02
ke 81 4/2 0.6 0.64 0.39 011 34 0,79  0.8L

k83 92 -1.e «0.39 -0.27 0,03 .01 038 -0.30 =0.970
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Table II (continued)

Ytheor.

Isotope  State Mep m My by by g.=o gr=Z/A Mexp
ke 8 92" .9 w035 -0.16 0,03 .02 .32 0.7 *1.005
kr 87 5/28 41,91 -0.9%2 -0.64, 0.0 .05 -0.71  -0.55

58 5° 87 92" .91 043 0.3 -0.02 .00  -0.43  -0.40 ~1.093
se 89 52" o1 -0.83 082 0.01 .00 -0.82  -0.81

w52 a9 0.9 087 002 .00 -0.88 085 -1.303
zr B 5/20 .91 0k =040 0,05 .02 -0.40  -0.32

M ® 52 i ouu 038 0.07 .03 037 0.2 -0.91

-y Mo 7 5/2* -1.91  -0,16 -0,14 -0.,01 02 0,22 -0,13 -0.933

WR T 52 <9 0k =037 0.8 .04 036 -0.25
R % 52 -9 0.4 -0.11  0.01 .06 -0.20 0.0k =-0.63
'O 5/2°  S1.91 -0.09 -0.06 -0.03 .06 -0.20 -0.03 -0.69

P2 52 a9 007 005 -0.00 .03 016 -0.04
Pa'% 52" .91 0.0 -0.06  0.05° .02 -0.19 0.01  -0,57
pa'®7  s2 a9t 014 -0.05 0.6 .00 -0.31  0.10
pa!'®? 52 a1 0.8 .05 0.8 -0 -0.38 0.2
pa!’ 52 .91 -0.22 -0.05 0.18 02 -0.37  0.14

@ 12 ale w0 w027 0.0 05 038 -0.22

3/2 1.15 0,57 0,16 0,13 .08 0.29 0.37
5/2* -1.99 -0,13 -0,09 0,00 ,02 -0,20 -0.07 -0.617
11/2  -1.99 -0.21 0,22 0,30 .11 0.48 0.62
' 52" .9 0.7 0.0 0,07 .01 0,26 -0.03 -0.829
a2 91 08 034 =031 .02 -0.64 -0.63 =0.5%
5/2 -1.99 0,23 -0,10 0.13 .00 0,34 0.02  (0.73)
e 42" a9 050 0.3 0,33 .01 -0.63 -0.66 -0.622
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52

Table II  (continued)
. Htheor,
Isotope State "sp qu Ho "y My gr=o gr=Z/A‘ "’exp
3/2 1.5  0.60 0.23 037 .12 038 0,72
5/2 1,99 -0,26 -0,09 0,17 .00 -0.38 0.08
11/2 -1, =0.39 0.17 0.9 .06  0.31  0.42
ca'® 12" a9 09 .33 -0.26 -0 -0.51  -0.59
oS 72 149 02 0.9 007 o1 0% 0.78
sn''  1/2 <191 -0.81 -0.69 0.18 o0.01 <0.88  .0.86
7/2 1.49 0.80 0.75 0.08  0.00 0.83 0.80
sa'’® 12" a1 -0.79 -0.68 0,22 0,00 089  0.91  _0.918
s’ 12" .t 0082 -0.69 0.8 0.00 0.84  -0.87  -1.000
3/2 1.15 0.73 0.61 0.15 0,01 0.68 0.77
11/2 -t,91 -0.76 -0.63 0,08 0,00 -0.75 -0.7
sn''? /28 .91 -0.79 0.66 0,07 -0.01 0.69 0.7 -1.046
3/2 1.15 0.73 0.66 0,10 0.00 0.72 0.76 (0.7)
11/2 -1.91 -0.68 -0.63 0,03 0,00 =0.67 -0.66
sn'® 3/2% Si.g1 070 -0.5%8  0.07 .01 -0.49  -0.52
3/2 1.15 0.71 0.66 0.07 0.00 0.71 0.73
11/2  -1.91 0.5 =0.53 0,00 0.00 =0.5k  -0.54
sn'?  1/2  -1.91  0.63 0.8 0,22 .0.01 =0.27  -0.27
3/2 1.15 0.71 0.65 0,05 0,00 0.69 0,70
11/2  -1,91 =0.40 -0.40 0,00 0,00 -0.40 -0.40
sn'® /2 <1.91 0.58 041 0.31  0.00 <0.15  =0.09
3/2 1.15 0.71 0.65 0,001 0,00 0.66 0.66
11/2  -1.91  -0.26 =0.25 0,00 0,00  0.26  -0.26
' 172" 1.1 058 0.35 0,10 -.04 -0.39 -0.49



(%)

Table II  (continued)
c Htheor.,
Isotope  State Mep Map Mo "y My g =0 g;fZ/A‘ Fexp
3/2 1,45 0.65 0.2 0.36 .02  0.66  0.80
1/2 1.9 -0.49 -0,32 -0.08 00 =0.47  -0.39
'3 128 .91 051 -0.31  0.19 -0, =0.09 =0.16 -0.736
re!?® /2" <191 0.7 -0.26 0.43 -.02  0.13  0.16 -0.887
3/2 1.15 0.64, 0,48 0.15 .01 0.56 0.64
1/2 1,9 -0,22 -0,22 0,00 00 0,22 -0.22
1?7 32" 145 0.4 051 0.0h .01 052 0,57
11/2  -1.91 -0.,11 -0,10 0,01 00 0,11 -0.09
1¢'29  3/2° 1.5 0.6 0.52 0.0 .02  0.50  0.56
1/2  -1.9 -0.05 -0,04 0,03 .00 -0,05 -0,01
s X' /2 ae o5k 02 047 03 0.8 0.19
3/2 1.5 0.66 0,30 0,30 .07  0.k2  0.67
1/2 -1.99 -0.32 -0.32 0,00 .00  -0,32 -0.32
xe'?% 12" a9t -0.51 -0.20 0,58 .01 0.28  0.40 -0.777
xe''  3/2° 145 0.8 0.4  0.05 .05 0.2  0.53  0.651
1/2 -1,9% -0,15 ~0.10 0.15 .01 -0.15 -0.07
xe'¥ 32" 145 om 050 o4 .03 048 0,57
1/2  -1.9 0,18 <,02 0,00 .01  -0.17  =0.10
g B! /2 -1.91° -0.58 -0.21 0.5 .01  0.27  0.38
3/2 1.15 0.69 0,32 0,17 .09 0.36 0.58
Ba'?  1/2° 1,91 -0.60 -0.19 0.57 .04  0.23  0.43
3/2 1.5 0,70 O0.40 0,08 .07  0.39 0.5
/2  -~1.99 0,26 -0,15 -0,02 .01 0,25 -0.16
Ba'¥ 3/2° 145 073 055 0,03 .02 053 0.6 0,837
Ba!t3?  4/2 .91 -0.8, -0.52 0.13 .00 <0.54 -0.39



(5)

Table II {continued)

Isotope State Hep qu My My My g =0 gr=Z/A Mexp
3/2 145 0.7 0.77 0.00 .00 0.7  0.77 0.936
11/2  -1.9 -0.,37 -0,37 0,00 .00 -0.37 -0.37
s 07 325 15 079 079 000 .00 079 079 t0.8
11/2  -1,91 -0.48 -0.48 0,00 ,00 -0.48 -0.48
oM™ 32" a5 o o o000 00 0. 0.7
na' 928 a9 -toh -1.04 0,00 00 -1.04  -1.04 1.0
Na'% /2% Siie 1,07 046 =0.11 .05 -0.75  -0.52 0.7
' 525 137 0.9 0.3 -0.18 .09  0.04 0,03 *0.6
2 St 72 a9t 41,05 <051 0,09 . .05 -0.76  -0.55 -0.8
s 7/2%  _t.e1 1,07 040 0,12 .09 =072 -0.u4 0.6
2% 0% 32" L.m 045 0.03 0.36 .3 0.2 0.73  0.657
s’ 32 .9 0.3 0.0 -0.06 .33 0,03  0.38
ss P67 1/2°  0.64, 0.64 0,21 0.00 .09  0.31  0.30
p'% 12" 0.4 0.64 0.2, -0.03 .09 0.4  0.13  0.606
gofie' > 1/2 064 064 027 -0.02 .03 029 029 0,535
13/2  -1.91  0.63 043 0.21 .03 0.1  0.67 =1,039
Hg' ' 1/2°  0.64 0.6, 0.31 =0.05 =-.04  0.26 0,22 0,527
13/2  -1.91  0.65 0.0 0.25 .05  0.62  0.69 -1,04
Hg' ¥ 172" 0.4 0.64 0.3 0,05 .00 039 032 0.530
ngo" 3/2*' -1.91 0.95 0.69 0.23 .02 0.89 0,95 -0.357
gp P07 1/2°  0.6h  0.64 06k 000 .00 06k  0.64 0.5%



Table III  Gyromagnetic ratio for the phonon, Since there
are no experimental results for any of the nuclei studied,
only the results for the 50-82 shell are presented,

Isotope gP;* Isotope gp:
5057 63 .01 5672 7 -3
PRLT* -.02 pa’32 .36
sn'1® -.09 Ba'34 41
sn'18 - 14 Ba'30 42
sn'%° -.15 Ba'>® .52
sn!%? - 14 SBCe' > .57
sn' 2 -.10 col 4O o5
52Te’§g .20 (2 .95
Te' 22 A7
Te‘zh .16
Te126 .18
Te' 28 .21
Te'30 .09
5% 55 .26
)(e':28 .25
XeTBO .28
xe'3? .33
xel31¢ .38
Xe'36 49

The calculation includes only the particles in the outer
shells, The core contribution would shift the g wvalues

toward 4.5



Table IV Quadrupole moments of Odd-Proton Nuclei. The isotope and state are
listed in the first two columns, the ground state being starred when known, The
next three columns contain the quasi-particle moment, and the moment corrected
by wave functions admixed by a § -force, f or two effective charges, The phonon
contribution is in columns six, and the last two columns are the theoretical and
experimental moments in units of 1024 cm?, The oxperimental values were taken
from a compilation kindly furnished by Dr. Gladys Fuller.

Isotope State ep=2 , eN=1 eP=l . eN=O eP=2 s eN;i eP=2 R eN=1
Qq.p. Qg.p. Q;. P. o'ph cheor Qexp
RV AR -.02 -0 =17 =19 0.22
5 Ga 69 5/5* -.03 -.02 -0 =16 -8 0.20
N V- A -.02 -0k - .6 -8 0.2
33 As RV Y 0.02 .02 .09 .26 .33
3348 7 3/2 0.01 .02 .07 .18 .21 0.31
33 As LYy 0.002 .01 .0l .06 .08
4 B 32 .06 .05 A7 51 .58
45 Br 32 .05 .05 .16 42 .51 .32
55 Br S0 32 0L .0l 13 .30 .39 .27
35 B 8 55" .03 .03 .09 .16 .24
g R0 5/2 A5 A 35 .40 .65 .28
3/2 .09 .08 .21 .26 ik
57 RO 87  5\2 .18 12 .25 .34 .54
3/2° .08 .07 A4 .20 .32 N
3 ¥ 20 92 - -.15 -3 -8 -.56
ww? v -.19 -.12 -.28 —h2 =62 -0.13
ww® a2 -y -.12 -3 -8 -8
P A7 S -.05 -09  -.53  -.61
P L7 SN -.04 -09 =T =71 +0.3
P 9/2" -.08 -.04 -0 -1.07  -1.13
ra'®' 92 02 .03 A7 .32 49



]

(2)

Table IV (continued)
Cef=2, =1 of=1, =0 f=2, &'=1 P2, o'=
Isotope State Q 4.p. Qg.p, Q;.p. Qph QU heor Qexp
' rRa'3 g2 .03 .03 .20 46 .65
o' w2 s A4 .62 .52 .97 .20
49 w92t 0.5 AL .62 .53 .97 1.18
Lot o2t o N .62 .5k .58 1.0
45 ' 92 0.5 Al .62 56 1,01 1.1
45 Y7 g2 0.2 A .61 55 1,01
Lo '’ 9/2° 0.2 K .61, .52 1,01
5 50'17 s5/20 -3 -.12 -.06 -4 =5 -.2
7/2 -.27 ~.10 +.02 ) -.46
51 st 520 L3 -12 -.07 -39 -43 -.26
7/2 -.27 -.10 -.0t =43 -
51 '3 52 -.31 -.12 -.07 =37 -2
72 -2 -.10 -0 =A0 -3
5 S0 /2 -3 -.12 -.07 -3k =40
5/2" -.28 -1 -.06 -.36 -4
51 52 -5 -.16 60 =75 -1.00  -0.89
7/2 -7 -.11 =45 -.88  -1,05
5317 5/20 -2 -17 -.61 -0 -.99  =0.79
7/2 -17 -.11 =43 -.81 -1.08
53127 52 -.26 -.17 -.59 -.63 %
72 -7 -1 -39 -67 -9  -0.55
5310 52 -2 -17 -54 =52 -.87
72 -7 -1 =35 =49 =76 0.0
ce' 52" - -1k - -.80  -1.04

55



(3)

Table IV (continued)
ef=2, e'=1  &F=1, =0 of=2, &M= ef=2, o=

Isotope State Q.p. 4. p. %.5.  %h  Oheor  exp

7/2" -.04 -.02 S0k -6 =49
5 cs'33 5.2 -.21 -4 —45 =68 -.%

/2 -.04 -.02 -.04 =27 =31 =0.003
55 cs'?® 572 -.22 -.15 -4 =39 -

/2" -.04 -.02 -06  -.08 .12 0.049
55 820 5/2 -.22 -.15 -30 =03  -.33

7/2* -.03 -.02 -.03 -.005 -.03 0.05
sp1a'%T 52 -.15 -.10 28 =38 .66

7/2* .08 .05 .19 .21 .38
. -.16 -.10 -2 -0,  -.25

7/2* .08 .05 .12 ,02 A4 .23
s P4 572 -.08 -.05 -09 -4 =10 -.07

7/2 .18 13 .25 .03 .28
5o Pe1¥ 572" -.08 -.05 ~13 -8 -.58

7/2 .18 .13 A .92 1.22
g B0V 5/2 .03 .03 .08 .16 .23

_7/2 .26 .18 .54 L% 1.33
g B0 YT 5/2 3 A7 .37 .21 .51

7/2" .27 A9 0 127 162 *0,9%
g P07 5/2 .03 .03 1 0, .09

7y .27 19 80 155 1,82
. 7Y .01 ,005 -.05 .20 16 1.0
g 112 32 .01 ,005 -.05 19 A5 1.0
TPV Y A2 .09 .53 68 1.08



(4)

Table IV (continued)

of=2, o'=1  of=1, &™=0  of=2, o'=1 Pz, o=t
. ‘ c c
Isotope State Qq.p. Qq.p. Qq.p. Qph cheor Qexp
ag M7 3/2" A3 .09 .57 62 1.07 0.56
gg au'% 3/2" 13 .09 .55 55 1.00
g 17 32 .26 .15 .54 12 .62
81 120" 3/ .26 A5 .57 XY .65
gy 27 372 .26 a5 .53 .07 .58
81 129  3/2 .26 A7 ik .03 47



TABLE V

Quadrupole Moments of Odd-Neutron Nuclei
(See the caption of table IV).
P N P N

of =2, g1 of1, Mo o2, o™i
Isotope State %Y.p. Qg‘p Qf;.p Un  %heor oxp
B 3/2 0.02 .0l .09 30 .35
285 5/2 # 0,035 .05 7 50 W59
302n67 3/2 047 <Ol a7 38 o7
5/2 # .072 .05 .22 S5 66 0.8
3007 9/2 £ =076 «s05 2l =9l =099 =2
358" 5/2 # .10 a1 2 2 .30 L
e U2 0.8
w2 924 .063 .10 a1 67 89 0.2
3™ 9/2 # 12 .13 il JL .89 0,30
3881-87 9/2 # 12 .05 .25 Sl .53
T 524 0% -.06 =2 =054 =31
wz:-” 5/2 # -.09% .05 =25 =079 -.34
e 5/24 .02 -.01 “05 =2 =22
W07 5/24  =.029 -.02 “e07 =17 =28
)‘2}4097 5/24  +.038 .05 26 +e29  +436
o 5/2 # .032 .05 .16 31 .37
T - N .06 2% 80 .82
WFEP 524 L0es .06 .30 6 9
W07 s24 ome Ok 2 63 19 8
8P 524 .095 o0l .29 S8 W5 W80
W 524 .05 31 h8 .62
sl 3/2 03 .02 “l2 w33 =k
11/2 -e03 +01 03 w60 =63



(2)

TABLE V (continued)

Isotope State eP-2, eN-I ,,P.1 ; oN-O ."-z, o"-l
C
qupo Qq-p QQ-P
129 ‘
Te 3/2 .03 «01 o7
52 °
11/2 .08 S TA «36
s LX0129 3/2 .007 -.005 -.003
11/2 .06 .10 35
5 Lxenl 3/2 # .03 .08 .32
11/2 .10 .13 o6
| 11/2 15 .15 «56
11/2 .15 W16 56
568a137 3/2 4 .06 .08 .26
11/2 22 .18 «63
5800139 3/2 * <06 +08 25
11/2 22 15 57
58Ce 7/2 £ -e23 -el? -olt9
s 32 4 .06 .10 .29
' 11/2 22 W16 59
145 ‘
60“" /2 # -e23 -.13 -e53
5/2 -e19 -ell -oli5
S 2 # =020 -l2 =52
5/2 19 -1 -el9
s 2 -7 -1l - l9
5/2 * -.19 -.u -.52
625mu7 7/2 * -e20 -el2 =52
P V¥ -18 -oll 50
0 189
76 ) 3/2 f -003 -002 -.103
08191
76 s 3/2 -.001 -.ws -.m‘.

|¢

.61

<19
1.1

37

99

.31

«78
«33

o84
.01
<05
03
12
=03
<02
07
-.03
0.0
=94
=15
«1.08
=31
-9
-1.10

=3k

05

Qbhoor Qex;:o

025
84
19
1.3
-.12
1.29
ol

1,16
47

1.25
o2b
68
«28
69

=54
J1
66

=56
+005
-1.06
-e20
~1.23
=38
=1.19
=1.29

=436

05

<7

+.6



(3)

TABLE V (continued)

Isotope State op;-z, eN-l oP-ii,coN-O eP--Z‘é eN-l
Qq.1:>. Qq.p Qq.p Qph che’or Qexp
78Ptl93 3/2 -.002 -.01 ~.012 0L .0
5/2 -.09 ~e06 -.29 -9l =1.09
, P 32 «035 02 oL TR I
5/2 -.055 ~:03 -ell 72 -.82
gt 32 +.073 .0l .29 6L 85
5/2 -.001 .02 <05 02 .05
o’ 32 .03 .00 .13 W26 W37
13/2 o2 <04 59 1,18 1.55 1.53
ofe’  3/2 .07 .01 28 0.6 0.68
13/2 26 .03 61 1.19  1.53
ale s 3/24 A1 .01 .37 b WTL 450
13/2 28 .03 59 1.08  LJ43



TABLE VI

B(E2) Values for ground state transitions in even-even muclei,
The column labeled B(EZ)THEOR lists the calculated B(EZ)0 + oy 2+ values using
the same parameters used to calculate the energies in Figs. 2a, b, In the few
cases for which the calculated energy (of Fig 2) is far below the experimental
valus, the B(E2) is listed in parenthesis for a lower X chosen to fit the
energy. The experimental values are listed in units of 2 x 10748 cm“, and
compared with the single particle value of 3 x 10~> e2 x 10748 AM3 opb,

ISOTOPE B(E2)qyo0n B(E),,\p X S.P. SOURCE
fght> .017 .072 1n a
%0 .051 .091 13 a
mb2 .100 .083 12 a
Niéh 092 .087 12
sl .264 .170 2 a
2050 .245 o145 18 a
28 164 .125 16 a
32Ge7° o458 172 18 a
Ge'? o476 «230 24 a
Ge'k .609 o317 33 a
Ge’® 0729 .263 28 a
Ge'® 451
3“Se‘,"‘ 696 o2 2
S’ (.519) 480 48 .
Se’® (.770) .385 38 a
se2¢ (o594) .283 28 .
se%2 327 .213 21 s
3610178 1.784 51 51
kr8° (,812) o34 3L
k%2 (.550) .18 18

KRB 0313 15 15



(2)

TABLE VI  {continued)

ISOTOPE B(EZ)TIEQB B(Ez)EX.P X S.P, Source
2 .205
sr®® o143 13 12 b
wzn9° RTAY
%2 .080
9l e } .79 65
hzuo% »166 27 21
4070 L4360 .30 23
¥o7® .683 27 21
4ot %0 .915 .61 47
B .279 .25 19
Bu’® .563 48 37
Rul® 97 .57 Al
Rul%? (1o424) 73 52
yepa (1.006) .55 37
pal® (L.261) .65 ik
pat%8 (1.603) T 50
pati0 (2.009) «86 58
T oLl L7 3
cal®® o571 .54 35
cat1f 687 .50 33
catt? o758 o5k 35
callt 199 .58 38
caltlé +809 .60 40
5°Sn112 .350 e n
Snlth .381 .20 12
st® .399 2 12
snl18 bl .23 U
snt20 o416 22 13



(3)

TABIE VI (contimued)

ISQTOPE B(ER)pyyrp B(E2)pyp X S.P. SOURCE
sni?2 365 .25 15
124, | |
Sn .273 021 12
52""’120 1.183 o55 29
Tel?? 1.307 .65 35
ret2k 1.080 .39 2
vel® 2729 .53 28
T0128 o‘b68 ou 22
Te130 +289 o34 18
5 AXGJ'ZB (1.654)
xe-30 1,174 48 2
xe?3? .592 32 16
Xenl‘ 03‘010
Xel36 0198
5Bt (1.814) .73 3
-
Ba 929
pal3® - ,509
Bal?® 29 .30 L
53"‘13? 631 | )
Cot40 392 .36 17 b
coth? 828 59 2
s .31 o34 15 o
Nathh 908 oLl 19 ¢

hlc:l]'l*6 2,100 o84 37



(1)

TABLE V1 (continued)

1SOTOPE B(E2)b, o p B(EZ)E'!E X 5.P. SOURCE
6zsml‘*6 +900
smih® 2.189 .89 37
su->0 (4.0) 132 56
6,04 T
ca50 1.872
7603188 (11.8) 2,80 85
0s1%0 (9.3) 2,55 78
; Pri% (5.2) 1.94 59 d
pt1% 4,+086 1.27 37 d
pt1%8 3,060 1.35 39
80}13196‘ 1.250
ng%® 1.355 1.13 32
1g>® .982 .85 24
Hg?% U9 059 17
Hg2% 461
g b 0337
o202 .280
" pp20k L6 17 5 .
pp20% .101 13 L ' o

a. P, H, Stelson and F. K. McGowan, Nuc, Phys. 32, 652 (1962)

b. S. Ofer and A, Schwarzschild, Phys. Rev, Letters 3, 384 (1959)
c. O, Nathan and V.I. Popw, Nuc, P‘ws. 31-’ 631 (1960 .

d. F, K, McGowan and P, H, Stelson Phys. Rev. 122, 1274 (1961)
e. O, Nathan Nuc. Phys. 30, 332 (1962

Other experimental data was obtained from a compilation kindly furnished
by Dr. Yasukasa Yoshizawa.



TABLE VII

B(EZ)O + «» 2' Cross over Rate. The same single particle
estimate is used as in Table VI. Effective charges ob =2,
e = 1, and of = 1, e = 0 used to campute B(E2)p, . in
units of e x 1078 en®,

Isotope BSZ) Th;or B;f:) ‘I'h;o: ; B(E2 )EXP :(E2) >
320e7°‘ .0026 .0016 <007 0.8
ce’? .0048 .0035 .0017 0.2
Ge T4 .0058 .0064, .022 3.
Ge ™ .00L2 .0115 .00, Ou
e 0. .0023 .005 0.5
‘ Se70 .0031 .0015 .010 1.
se18 .0018 .0046 .010 1,
5650 .0016 .0030 .019 2.
se22 .0011 .0101 .008 0.8
3 T® 0. | .0102
kr20 0 .0002
kB2 0. .0008
keBh .0001 .0026
k26 .0005 .0019
2 .0008 .0007
srB8 .0009 .0037
LB .0006 .0022,
2072 «0005 .0006
2ok +0008 .0008
‘ 2079 .0022 +0070
ot 40005 +0006 .05 0.5

uo%% 0009 .0008 o1 0.9




(2)

Isotope

Mo98

M o100

Ru?e
RulOO
102

104

110
110

cat2

. 11,

16

50
Snu6

Snn8

s n120

Sn122

Snlz‘

122
sofe
pot2h

Te

T‘128

.“130

TABLE VII

B(E2 )Theor B(E2 )'I'heor
aPnl, e"=0 ep-2, o=
«0015 +0040
<0048 «01591
+0001 «0001
«0003 «0002
+0005 +00L4
+0010 <0040
.0007 «0034
«0010 «0011
«0012 «0039
+0019 +0071
«0022 <0077
«0025 «0067
«0026 «0051
0. +0001
0, »0012
0. +0022
0. +0019
0. +0011
0. 0004
0, «00L5
0. «0026
0. «001.0
O +0002
0. «0001

(continued)

B(EZ)Exp

NOTA
.013
+005
«015
017
«010
0L,
«007
«010
«020
«010
«007
-011

«019
«016

«012
0l

8(1'22)Exp

B(B2) s.P.

1.
1.
Ouly
1.

0.8
1.

0.5
0.6
1.

0.6
0.4
0.7

1.
1.
0.3
0.7
0.6



(3)

TABLE VII (contimued)
B(E2)py, 0o B(E2)py 0 or ‘ B(E2)g, ) B(E2)p,,

Isotope e =1, e™=0  e'=2, e™} B(E2) S.P.
I Ot 0006 .0002

Xeno <0004 «0008

xet32 .0002 .o011

Xenl‘ .0001 «0007
5683.130 0043 127

pal3? .0025 <0072

pal3h 0016 0068

pal3® .0035 .0017
5gCe0 .0015 0073

Ceu‘o 0. +0001

cet42 «00L9 024,
OB .0039 .0192

Nalhé .0080 <0470

Nathe L0164, .106

nat>° 0767 o512
625::.1“6 .0019 .0104

sulh® <0029 «0203

sut>° .0073 <0577

snt?? <054 o437
7608186 .0136 .0856

05268 .0107 0702 «20 6e

0s%0 <0074, <0480 .18 5e

0e192 <0053 .0325 o2 6.
2gPt 2 +0004 <0003

pel% +0003 .0003 <009 0.3

Pt196 .0002 +000,



(&)

Isotope

198
196
198

EEE%’ZE

202
204

&

TABLE VII
B(E?) Theor B (m)'rheor
ep-l, e"=0 oP'-Z, o1
+0001 0007
«0044, +0155
«0043 »0160
« 0046 «0206
«0022 +0140
«0019 .0186

(contimied)

B(E2) Exp

B(2)g, )

B(E2) S.P.

The experimental results were obtained from a compilation kindly

furnished by Dr. Yasukaza Yoshizawa,
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